The algebras of bounded and essentially bounded Lebesgue measurable functions

The algebras of bounded and essentially bounded Lebesgue measurable functions AbstractLet X be a set in ℝn with positive Lebesgue measure. It is well known that the spectrum of the algebra L∞(X) of (equivalence classes) of essentially bounded, complex-valued, measurable functions on X is an extremely disconnected compact Hausdorff space.We show, by elementary methods, that the spectrum M of the algebra ℒb(X, ℂ) of all bounded measurable functions on X is not extremely disconnected, though totally disconnected. Let ∆ = { δx : x ∈ X} be the set of point evaluations and let g be the Gelfand topology on M. Then (∆, g) is homeomorphic to (X, Τdis),where Tdis is the discrete topology. Moreover, ∆ is a dense subset of the spectrum M of ℒb(X, ℂ). Finally, the hull h(I), (which is homeomorphic to M(L∞(X))), of the ideal of all functions in ℒb(X, ℂ) vanishing almost everywhere on X is a nowhere dense and extremely disconnected subset of the Corona M \ ∆ of ℒb(X, ℂ). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Demonstratio Mathematica de Gruyter

The algebras of bounded and essentially bounded Lebesgue measurable functions

Loading next page...
 
/lp/degruyter/the-algebras-of-bounded-and-essentially-bounded-lebesgue-measurable-DcmXdm73Gc
Publisher
De Gruyter Open
Copyright
© by Raymond Mortini
ISSN
0420-1213
eISSN
2391-4661
D.O.I.
10.1515/dema-2017-0010
Publisher site
See Article on Publisher Site

Abstract

AbstractLet X be a set in ℝn with positive Lebesgue measure. It is well known that the spectrum of the algebra L∞(X) of (equivalence classes) of essentially bounded, complex-valued, measurable functions on X is an extremely disconnected compact Hausdorff space.We show, by elementary methods, that the spectrum M of the algebra ℒb(X, ℂ) of all bounded measurable functions on X is not extremely disconnected, though totally disconnected. Let ∆ = { δx : x ∈ X} be the set of point evaluations and let g be the Gelfand topology on M. Then (∆, g) is homeomorphic to (X, Τdis),where Tdis is the discrete topology. Moreover, ∆ is a dense subset of the spectrum M of ℒb(X, ℂ). Finally, the hull h(I), (which is homeomorphic to M(L∞(X))), of the ideal of all functions in ℒb(X, ℂ) vanishing almost everywhere on X is a nowhere dense and extremely disconnected subset of the Corona M \ ∆ of ℒb(X, ℂ).

Journal

Demonstratio Mathematicade Gruyter

Published: Apr 25, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial