Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium Leptolingbya frigida

Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium... AbstractMicrobes play a fundamental role in the precipitation of silicate biominerals, thereby affecting the Si geochemical cycle. The fine mechanisms ruling biomineralization are not yet fully understood, and their microscopic structures can offer deep insight into their processes of formation, reactivity and stability. In this study, a Zn silicate biomineral, extracellularly produced by cyanobacterium Leptolingbya frigida, was investigated combining nuclear magnetic resonance (NMR), Zn K-edge X-ray absorption spectroscopy (XAS) and other complementary techniques. 29Si magic angle spinning and 29Si/1H cross polarization magic angle spinning analysis, Fourier transform infrared spectroscopy (FTIR) and XAS analysis revealed a poorly crystalline phase closely resembling hemimorphite [Zn4Si2O7(OH)2·H2O]. Zn K-edge extended X-ray absorption fine structure (EXAFS) provided further structural details, revealing that the Zn-O-Si interatomic distances were 7–8% shorter than the abiotic mineral. 13C NMR spectra analysis was conducted to investigate the composition of the Zn silicate biomineral organic matrix, and results revealed that C atoms occurred in several functional groups such as carbonyl carbons, C rings, O-aliphatic chains, N-aliphatic chains, and aliphatic chains.Under slightly alkaline conditions, bacterial cell walls exhibited fundamental control on the biomineralization process by binding Zn ions and forming Zn–O–Si bonds. In this way, L. frigida cell walls served as a reactive surface for the precipitation of this Zn sorosilicate, hindering the condensation of silicon dimers. Moreover, we found a 29Si NMR band at 85 ppm that could be attributed to a (C3H6O3)2Si complex. This complex could play a role in the control of silicon polymerization, with implications for Si biomineralization processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium Leptolingbya frigida

Loading next page...
 
/lp/degruyter/structure-of-low-order-hemimorphite-produced-in-a-zn-rich-environment-hsiEgypFNA
Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0003-004X
eISSN
1945-3027
D.O.I.
10.2138/am-2018-6128
Publisher site
See Article on Publisher Site

Abstract

AbstractMicrobes play a fundamental role in the precipitation of silicate biominerals, thereby affecting the Si geochemical cycle. The fine mechanisms ruling biomineralization are not yet fully understood, and their microscopic structures can offer deep insight into their processes of formation, reactivity and stability. In this study, a Zn silicate biomineral, extracellularly produced by cyanobacterium Leptolingbya frigida, was investigated combining nuclear magnetic resonance (NMR), Zn K-edge X-ray absorption spectroscopy (XAS) and other complementary techniques. 29Si magic angle spinning and 29Si/1H cross polarization magic angle spinning analysis, Fourier transform infrared spectroscopy (FTIR) and XAS analysis revealed a poorly crystalline phase closely resembling hemimorphite [Zn4Si2O7(OH)2·H2O]. Zn K-edge extended X-ray absorption fine structure (EXAFS) provided further structural details, revealing that the Zn-O-Si interatomic distances were 7–8% shorter than the abiotic mineral. 13C NMR spectra analysis was conducted to investigate the composition of the Zn silicate biomineral organic matrix, and results revealed that C atoms occurred in several functional groups such as carbonyl carbons, C rings, O-aliphatic chains, N-aliphatic chains, and aliphatic chains.Under slightly alkaline conditions, bacterial cell walls exhibited fundamental control on the biomineralization process by binding Zn ions and forming Zn–O–Si bonds. In this way, L. frigida cell walls served as a reactive surface for the precipitation of this Zn sorosilicate, hindering the condensation of silicon dimers. Moreover, we found a 29Si NMR band at 85 ppm that could be attributed to a (C3H6O3)2Si complex. This complex could play a role in the control of silicon polymerization, with implications for Si biomineralization processes.

Journal

American Mineralogistde Gruyter

Published: May 25, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off