Some Invariant Properties of Quasi-Möbius Maps

Some Invariant Properties of Quasi-Möbius Maps References[1] Jonas Beyrer and Viktor Schroeder. Trees and ultrametric Möbius structures. arXiv:1508.03257 [math], August 2015.[2] Stephen Buckley, David Herron, and Xiangdong Xie. Metric space inversions, quasihyperbolic distance, and uniform spaces. Indiana University Mathematics Journal, 57(2):837-890, 2008.[3] Sergei Buyalo and Viktor Schroeder. Elements of Asymptotic Geometry. EMS Monographs in Mathematics. European Mathematical Society, Zürich, 2007.[4] Guy David and Stephen Semmes. Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure. Number 7 in Oxford lecture series in mathematics and its applications. Clarendon Press, Oxford University Press, Oxford, New York, 1997.[5] Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. International Mathematics Research Notices, 2005(58):3625-3655.10.1155/IMRN.2005.3625[6] Xining Li and Nageswari Shanmugalingam. Preservation of bounded geometry under sphericalization and flattening. Indiana University Mathematics Journal, 64(5):1303-1341, 2015.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000364888600002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[7] Jouni Luukkainen and Eero Saksman. Every Complete Doubling Metric Space Carries a Doubling Measure. Proceedings of the American Mathematical Society, 126(2):531-534, 1998.[8] John M. Mackay and Jeremy T. Tyson. Conformal Dimension: Theory and Application. Number v. 54 in University Lecture Series. American Mathematical Society, Providence, R.I, 2010.[9] Johannes Bjørn Thomas Meyer. Uniformly Perfect Boundaries of Gromov Hyperbolic Spaces. PhD thesis, University of Zürich, Zürich, 2009.[10] Jeremy T. Tyson and others. Lowering the Assouad dimension by quasisymmetric mappings. Illinois Journal of Mathematics, 45(2):641-656, 2001.[11] Jussi Väisälä. Quasimöbius maps. Journal d’Analyse Mathematique, 44(1):218-234, 1984.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354706300003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[12] Xiangdong Xie. Nagata dimension and quasi-Möbius maps. Conformal geometry and dynamics: An electronic journal of the AMS, 12(1):1-9, 2008. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analysis and Geometry in Metric Spaces de Gruyter

Some Invariant Properties of Quasi-Möbius Maps

Free
9 pages

Loading next page...
 
/lp/degruyter/some-invariant-properties-of-quasi-m-bius-maps-99GelZbugJ
Publisher
De Gruyter Open
Copyright
© 2017
ISSN
2299-3274
eISSN
2299-3274
D.O.I.
10.1515/agms-2017-0004
Publisher site
See Article on Publisher Site

Abstract

References[1] Jonas Beyrer and Viktor Schroeder. Trees and ultrametric Möbius structures. arXiv:1508.03257 [math], August 2015.[2] Stephen Buckley, David Herron, and Xiangdong Xie. Metric space inversions, quasihyperbolic distance, and uniform spaces. Indiana University Mathematics Journal, 57(2):837-890, 2008.[3] Sergei Buyalo and Viktor Schroeder. Elements of Asymptotic Geometry. EMS Monographs in Mathematics. European Mathematical Society, Zürich, 2007.[4] Guy David and Stephen Semmes. Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure. Number 7 in Oxford lecture series in mathematics and its applications. Clarendon Press, Oxford University Press, Oxford, New York, 1997.[5] Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. International Mathematics Research Notices, 2005(58):3625-3655.10.1155/IMRN.2005.3625[6] Xining Li and Nageswari Shanmugalingam. Preservation of bounded geometry under sphericalization and flattening. Indiana University Mathematics Journal, 64(5):1303-1341, 2015.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000364888600002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[7] Jouni Luukkainen and Eero Saksman. Every Complete Doubling Metric Space Carries a Doubling Measure. Proceedings of the American Mathematical Society, 126(2):531-534, 1998.[8] John M. Mackay and Jeremy T. Tyson. Conformal Dimension: Theory and Application. Number v. 54 in University Lecture Series. American Mathematical Society, Providence, R.I, 2010.[9] Johannes Bjørn Thomas Meyer. Uniformly Perfect Boundaries of Gromov Hyperbolic Spaces. PhD thesis, University of Zürich, Zürich, 2009.[10] Jeremy T. Tyson and others. Lowering the Assouad dimension by quasisymmetric mappings. Illinois Journal of Mathematics, 45(2):641-656, 2001.[11] Jussi Väisälä. Quasimöbius maps. Journal d’Analyse Mathematique, 44(1):218-234, 1984.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354706300003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[12] Xiangdong Xie. Nagata dimension and quasi-Möbius maps. Conformal geometry and dynamics: An electronic journal of the AMS, 12(1):1-9, 2008.

Journal

Analysis and Geometry in Metric Spacesde Gruyter

Published: Sep 2, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off