Simulation of effects of the electrode structure and material in the density measuring system of the peripheral nerve based on micro-electrical impedance tomography

Simulation of effects of the electrode structure and material in the density measuring system of... AbstractThe electrode structure in micro-electrical impedance tomography (MEIT) highly influences the measurement sensitivity and therefore the reconstructed image quality. Hence, optimizing the electrode structure leads to the improvement of image quality in the reconstruction procedure. Although there have been many investigations on electrical impedance tomography (EIT) electrodes, there is no comprehensive study on their influence on images of the peripheral nerve. In this paper, we present a simulation method to study the effects of the electrode structure in the density measurement system of the peripheral nerve based on MEIT. The influence of the electrode structure such as dimensions, material and the number of electrodes and also the recognition feature of different radii of fascicle and different locations of fascicles has been studied. Data were reconstructed from the real and imaginary parts of complex conductivity data, respectively. It has been shown that the material of the electrodes had no effect on the reconstructed images, while the dimensions of the electrodes significantly affected the image sensitivity and thus the image quality. An increase in the number of electrodes increased the amount of data and information content. However, as the number of electrodes increased due to the given perimeter of the peripheral nerve, the area of the electrodes was reduced. This reduction affects the reconstructed image quality. The real and imaginary parts of the data were separately reconstructed for each case. Although, in real EIT systems, the reconstructed images using the real part of the signal have a better signal-to-noise ratio (SNR), this study proved that for a density measuring system of the peripheral nerve, the reconstructed images using the imaginary part of the signal had better quality. This simulation study proposes the effects of the electrode size and material and obtained spatial resolution that was high enough to reconstruct fascicles in a peripheral nerve. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering / Biomedizinische Technik de Gruyter

Simulation of effects of the electrode structure and material in the density measuring system of the peripheral nerve based on micro-electrical impedance tomography

Loading next page...
 
/lp/degruyter/simulation-of-effects-of-the-electrode-structure-and-material-in-the-fBV01IP12F
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1862-278X
eISSN
1862-278X
D.O.I.
10.1515/bmt-2016-0089
Publisher site
See Article on Publisher Site

Abstract

AbstractThe electrode structure in micro-electrical impedance tomography (MEIT) highly influences the measurement sensitivity and therefore the reconstructed image quality. Hence, optimizing the electrode structure leads to the improvement of image quality in the reconstruction procedure. Although there have been many investigations on electrical impedance tomography (EIT) electrodes, there is no comprehensive study on their influence on images of the peripheral nerve. In this paper, we present a simulation method to study the effects of the electrode structure in the density measurement system of the peripheral nerve based on MEIT. The influence of the electrode structure such as dimensions, material and the number of electrodes and also the recognition feature of different radii of fascicle and different locations of fascicles has been studied. Data were reconstructed from the real and imaginary parts of complex conductivity data, respectively. It has been shown that the material of the electrodes had no effect on the reconstructed images, while the dimensions of the electrodes significantly affected the image sensitivity and thus the image quality. An increase in the number of electrodes increased the amount of data and information content. However, as the number of electrodes increased due to the given perimeter of the peripheral nerve, the area of the electrodes was reduced. This reduction affects the reconstructed image quality. The real and imaginary parts of the data were separately reconstructed for each case. Although, in real EIT systems, the reconstructed images using the real part of the signal have a better signal-to-noise ratio (SNR), this study proved that for a density measuring system of the peripheral nerve, the reconstructed images using the imaginary part of the signal had better quality. This simulation study proposes the effects of the electrode size and material and obtained spatial resolution that was high enough to reconstruct fascicles in a peripheral nerve.

Journal

Biomedical Engineering / Biomedizinische Technikde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off