Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities

Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities AbstractShortwave infrared radiation (SWIR) is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400–650 nm) and near-infrared (NIR, 700–900 nm) wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a) the effect of the energy gap between the excited and ground state on the quantum efficiency, (b) the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c) the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanophotonics de Gruyter

Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities

Loading next page...
 
/lp/degruyter/shortwave-infrared-swir-emitters-for-biological-imaging-a-review-of-0xineqbvbZ
Publisher
De Gruyter
Copyright
©2017, Mikhail Y. Berezin et al., published by De Gruyter.
ISSN
2192-8614
eISSN
2192-8614
D.O.I.
10.1515/nanoph-2017-0039
Publisher site
See Article on Publisher Site

Abstract

AbstractShortwave infrared radiation (SWIR) is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400–650 nm) and near-infrared (NIR, 700–900 nm) wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a) the effect of the energy gap between the excited and ground state on the quantum efficiency, (b) the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c) the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented.

Journal

Nanophotonicsde Gruyter

Published: Jun 29, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off