Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images

Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images AbstractIn view of predicting bright lesions such as hard exudates, cotton wool spots, and drusen in retinal images, three different segmentation techniques have been proposed and their effectiveness is compared with existing segmentation techniques. The benchmark images with annotations present in the structured analysis of the retina (STARE) database is considered for testing the proposed techniques. The proposed segmentation techniques such as region growing (RG), region growing with background correction (RGWBC), and adaptive region growing with background correction (ARGWBC) have been used, and the effectiveness of the algorithms is compared with existing fuzzy-based techniques. Images of eight categories of various annotations and 10 images in each category have been used to test the consistency of the proposed algorithms. Among the proposed techniques, ARGWBC has been identified to be the best method for segmenting the bright lesions based on its sensitivity, specificity, and accuracy. Fifteen different features are extracted from retinal images for the purpose of identification and classification of bright lesions. Feedforward backpropagation neural network (FFBPNN) and pattern recognition neural network (PRNN) are used for the classification of normal/abnormal images. Probabilistic neural network (PNN), radial basis exact fit (RBE), radial basis fewer neurons (RB), and FFBPNN are used for further bright lesion classification and achieve 100% accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering / Biomedizinische Technik de Gruyter

Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images

Loading next page...
 
/lp/degruyter/segmentation-and-classification-of-bright-lesions-to-diagnose-diabetic-qwEIsSW00R
Publisher
De Gruyter
Copyright
©2016 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1862-278X
eISSN
1862-278X
D.O.I.
10.1515/bmt-2015-0188
Publisher site
See Article on Publisher Site

Abstract

AbstractIn view of predicting bright lesions such as hard exudates, cotton wool spots, and drusen in retinal images, three different segmentation techniques have been proposed and their effectiveness is compared with existing segmentation techniques. The benchmark images with annotations present in the structured analysis of the retina (STARE) database is considered for testing the proposed techniques. The proposed segmentation techniques such as region growing (RG), region growing with background correction (RGWBC), and adaptive region growing with background correction (ARGWBC) have been used, and the effectiveness of the algorithms is compared with existing fuzzy-based techniques. Images of eight categories of various annotations and 10 images in each category have been used to test the consistency of the proposed algorithms. Among the proposed techniques, ARGWBC has been identified to be the best method for segmenting the bright lesions based on its sensitivity, specificity, and accuracy. Fifteen different features are extracted from retinal images for the purpose of identification and classification of bright lesions. Feedforward backpropagation neural network (FFBPNN) and pattern recognition neural network (PRNN) are used for the classification of normal/abnormal images. Probabilistic neural network (PNN), radial basis exact fit (RBE), radial basis fewer neurons (RB), and FFBPNN are used for further bright lesion classification and achieve 100% accuracy.

Journal

Biomedical Engineering / Biomedizinische Technikde Gruyter

Published: Aug 1, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off