Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Gelato, E. Parthé (1987)
STRUCTURE TIDY– a computer program to standardize crystal structure dataJournal of Applied Crystallography, 20
A. Götze, H. Auer, R. Finger, T. Hansen, H. Kohlmann (2017)
A sapphire single-crystal cell for in situ neutron powder diffraction of solid-gas reactionsPhysica B: Condensed Matter
N. Ohba, M. Aoki, T. Noritake, K. Miwa, S. Towata (2005)
First-principles study of a hydrogen storage material CaSiPhysical Review B, 72
Germany (fax: (+49)7247-808-666; e-mail: crysdata(at)fizkarlsruhe(dot)de, on quoting the deposition numbers CSD-433794 (α-BaGeD0.09)
Henry Auer, R. Schlegel, Oliver Oeckler, H. Kohlmann (2017)
Structural and Electronic Flexibility in Hydrides of Zintl Phases with Tetrel-Hydrogen and Tetrel-Tetrel Bonds.Angewandte Chemie, 56 40
H. Rietveld (1969)
A profile refinement method for nuclear and magnetic structuresJournal of Applied Crystallography, 2
(2010)
C: Lal
H. Kohlmann, N. Kurtzemann, R. Weihrich, T. Hansen (2009)
In situ Neutron Powder Diffraction on Intermediate Hydrides of MgPd3 in a Novel Sapphire Gas Pressure CellZeitschrift für anorganische und allgemeine Chemie, 635
H. Rietveld (1967)
Line profiles of neutron powder-diffraction peaks for structure refinementActa Crystallographica, 22
Yunfeng Zhu, Wei Zhang, Zhibing Liu, Liquan Li (2010)
Hydrogen storage properties of the Zintl phase alloy SrAl2 doped with TiF3Journal of Alloys and Compounds, 492
N.A.A. Rusman, M. Dahari (2016)
A review on the current progress of metal hydrides material for solid-state hydrogen storage applicationsInternational Journal of Hydrogen Energy, 41
FullProf.2k, Version 5.30 -Mar2012-ILL JRC
S. Orimo, Y. Nakamori, Jennifer Eliseo, A. Züttel, C. Jensen (2007)
Complex hydrides for hydrogen storage.Chemical reviews, 107 10
B. Sakintuna, F. Lamari-Darkrim, M. Hirscher (2007)
Metal hydride materials for solid hydrogen storage: a reviewInternational Journal of Hydrogen Energy, 32
Iryna Kurylyshyn, T. Fässler, A. Fischer, C. Hauf, G. Eickerling, Manuel Presnitz, W. Scherer (2014)
Probing the Zintl-Klemm concept: a combined experimental and theoretical charge density study of the Zintl phase CaSi.Angewandte Chemie, 53 11
Hui Wu, Wei Zhou, T. Udovic, J. Rush, T. Yildirim, M. Hartman, R. Bowman, J. Vajo (2007)
Neutron vibrational spectroscopy and first-principles calculations of the ternary hydrides Li4Si2H(D) and Li4Ge2H(D): Electronic structure and lattice dynamicsPhysical Review B, 76
MATCH: Commun. Math. Comput. Chem., 9
Angew. Chem., 129
H. Wang, Huai-jun Lin, Weitong Cai, L. Ouyang, M. Zhu (2016)
Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – A review of recent progressJournal of Alloys and Compounds, 658
(2015)
Reaction pathways to the Zintl phase hydrides CaSiH and MGeHx (M = Sr
P. Wenderoth, H. Kohlmann (2013)
In situ neutron powder diffraction of the formation of SrGa2D2, and hydrogenation behavior of YbGa2 and EuGa2.Inorganic chemistry, 52 18
H. Auer, R. Guehne, M. Bertmer, S. Weber, P. Wenderoth, T. Hansen, J. Haase, H. Kohlmann (2017)
Hydrides of Alkaline Earth-Tetrel (AeTt) Zintl Phases: Covalent Tt-H Bonds from Silicon to Tin.Inorganic chemistry, 56 3
U. Häussermann, V. Kranak, K. Puhakainen (2010)
Hydrogenous Zintl Phases: Interstitial Versus Polyanionic HydridesChemInform, 139
Juan Rodriguez-Carvaj (1993)
Recent advances in magnetic structure determination neutron powder diffraction
Q.-X. Xie, R. Nesper (2003)
Crystal structure of sodium strontium monogermanide, NaxSr1-xGe(x=0.14), 218
I. Jain, C. Lal, A. Jain (2010)
Hydrogen storage in Mg: A most promising materialInternational Journal of Hydrogen Energy, 35
V. Ting, P. Henry, H. Kohlmann, Chick Wilson, M. Weller (2010)
Structural isotope effects in metal hydrides and deuterides.Physical chemistry chemical physics : PCCP, 12 9
Elisabeth Bianco, Sheneve Butler, Shishi Jiang, O. Restrepo, W. Windl, J. Goldberger (2013)
Stability and exfoliation of germanane: a germanium graphane analogue.ACS nano, 7 5
VESTA -Visualisation for Electronic and STructural Analysis
H. Auer, D. Wallacher, T. Hansen, H. Kohlmann (2017)
In Situ Hydrogenation of the Zintl Phase SrGe.Inorganic chemistry, 56 3
J. Chotard, W. Tang, P. Raybaud, R. Janot (2011)
Potassium silanide (KSiH3): a reversible hydrogen storage material.Chemistry, 17 44
F. Gingl, T. Vogt, E. Akiba (2000)
Trigonal SrAl2H2: the first Zintl phase hydrideJournal of Alloys and Compounds, 306
Daniel Bull, E. Weidner, Igor Shabalin, M. Telling, Catherine Jewell, Duncan Gregory, D. Ross (2010)
Pressure-dependent deuterium reaction pathways in the Li-N-D system.Physical chemistry chemical physics : PCCP, 12 9
H. Auer, H. Kohlmann (2017)
In situ Investigations on the Formation and Decomposition of KSiH3 and CsSiH3Zeitschrift für anorganische und allgemeine Chemie, 643
W. Harms, M. Wendorff, C. Röhr (2009)
Structure and bonding of ternary gallides CaGa1−x(Si/Sn/Al/In)x with the CrB type and related structuresJournal of Alloys and Compounds, 469
Hui-yue Wu, R. Michael, Hartman, T. Udovic, J. Rush, W. Zhou, Robert Jre, John Vajof (2007)
Structure of the novel ternary hydrides Li 4 Tt 2 D ( Tt = Si and Ge )
G. Behrendt, C. Reichert, H. Kohlmann (2016)
Hydrogenation Reaction Pathways in the Systems Li3N–H2, Li3N–Mg–H2, and Li3N–MgH2–H2 by in Situ X-ray Diffraction, in Situ Neutron Diffraction, and in Situ Thermal AnalysisJournal of Physical Chemistry C, 120
Hui Wu, M. Hartman, T. Udovic, J. Rush, Wei Zhou, R. Bowman, J. Vajo (2007)
Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge).Acta crystallographica. Section B, Structural science, 63 Pt 1
J. Zhang, S. Yan, H. Qu, X. Yu, P. Peng (2017)
Alkali metal silanides α-MSiH3: A family of complex hydrides for solid-state hydrogen storageInternational Journal of Hydrogen Energy, 42
T. Hansen, H. Kohlmann (2014)
Chemical Reactions followed by in situ Neutron Powder DiffractionZeitschrift für anorganische und allgemeine Chemie, 640
K. Momma, F. Izumi (2011)
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology dataJournal of Applied Crystallography, 44
E. Cuervo-Reyes, E. Stalder, C. Mensing, Serhiy Budnyk, R. Nesper (2009)
Unexpected Magnetism in Alkaline Earth Mono-SilicidesarXiv: Other Condensed Matter
(2010)
Bärnighausen , Group - Subgroup realtions between space groups : a useful tool in crystal chemistry
E. Reyes, R. Nesper (2012)
Electronic Structure and Properties of the Alkaline Earth MonosilicidesJournal of Physical Chemistry C, 116
Kasper Møller, B. Hansen, A. Dippel, J. Jørgensen, T. Jensen (2014)
Characterization of Gas-Solid Reactions using In Situ Powder X-ray DiffractionZeitschrift für anorganische und allgemeine Chemie, 640
T. Hansen, P. Henry, H. Fischer, J. Torregrossa, P. Convert (2008)
The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometerMeasurement Science and Technology, 19
M. Aoki, N. Ohba, T. Noritake, S. Towata (2004)
Reversible hydriding and dehydriding properties of CaSi: Potential of metal silicides for hydrogen storageApplied Physics Letters, 85
F. Stephens, Vincent Pons, R. Baker (2007)
Ammonia-borane: the hydrogen source par excellence?Dalton transactions, 25
D. Többens, S. Zander (2016)
KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY IIJournal of large-scale research facilities JLSRF, 2
David Bader, R. Pennington (2001)
ApplicationsThe International Journal of High Performance Computing Applications, 15
AbstractHydrogenation products of the Zintl phases AeTt (Ae = alkaline earth; Tt = tetrel) exhibit hydride anions on interstitial sites as well as hydrogen covalently bound to Tt which leads to a reversible hydrogenation at mild conditions. In situ thermal analysis, synchrotron and neutron powder diffraction under hydrogen (deuterium for neutrons) pressure was applied to BaTt (Tt=Ge, Sn). BaTtHy (1<y<1.67, γ-phases) were formed at 5 MPa hydrogen pressure and elevated temperatures (400–450 K). Further heating (500–550 K) leads to a hydrogen release forming the new phases β-BaGeH0.5 (Pnma, a=1319.5(2) pm, b=421.46(2) pm, c=991.54(7) pm) and α-BaSnH0.19 (Cmcm, a=522.72(6) pm, b=1293.6(2) pm, c=463.97(6) pm). Upon cooling the hydrogen rich phases are reformed. Thermal decomposition of γ-BaGeHy under vacuum leads to β-BaGeH0.5 and α-BaGeH0.13 [Cmcm, a=503.09(3) pm, b=1221.5(2) pm, c=427.38(4) pm]. At 500 K the reversible reaction α-BaGeH0.23 (vacuum)⇄β-BaGeH0.5 (0.2 MPa deuterium pressure) is fast and was observed with 10 s time resolution by in situ neutron diffraction. The phases α-BaTtHy show a pronounced phase width (at least 0.09<y<0.36). β-BaGeH0.5 and the γ-phases appear to be line phases. The hydrogen poor (α- and β-) phases show a partial occupation of Ba4 tetrahedra by hydride anions leading to a partial oxidation of polyanions and shortening of Tt–Tt bonds.
Zeitschrift für Kristallographie - Crystalline Materials – de Gruyter
Published: Jun 27, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.