Research Article. Role of ascorbic acid and iron in mechanical and oxygen absorption properties of starch and polycaprolactone multilayer film

Research Article. Role of ascorbic acid and iron in mechanical and oxygen absorption properties... AbstractA trilayer film based on thermoplastic starch (TPS) for the core layer and poly(ε-caprolactone) (PCL) for the skin layers was obtained by coextrusion. Ascorbic acid and iron powder were added at respectively 15% and 1.5% w/w in the TPS layer for their capacity to act as oxygen scavenger, making the film usable as active food packaging. This study demonstrates that these compounds also play a role in the interactions between the different layers. FTIR measurements show that ascorbic acid migrates at the interface between TPS and PCL, where it acts as a compatibiliser between both polymers, probably by creating new interactions between polar functions of both polymers. This leads to a better adhesion of the different layers, demonstrated by the increase of the adhesion energy from 4.10−3 N·mm−1 for the multilayer film TPS-PCL to 12.10−3 N·mm−1 for the multilayer film containing the active components. Thanks to this compatibilising effect, the mechanical properties of the multilayer film containing ascorbic acid and iron are widely improved with an average maximal tensile strength of 7 MPa, against 3.7 MPa for the multilayer film without the active components and with an elongation at break of respectively 1450% against 290%. However, despite the hydrophobicity of PCL, the water sorption of the TPS-based layer is only slightly reduced. The multilayer film shows active oxygen scavenging properties but the rate of this reaction is divided by two compared to the active film without PCL layers (15 days to reach less than 1% oxygen for the active film without PCL layers and approximately 30 days to reach the same oxygen level with the multilayer active film). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Packaging Research de Gruyter

Research Article. Role of ascorbic acid and iron in mechanical and oxygen absorption properties of starch and polycaprolactone multilayer film

Loading next page...
 
/lp/degruyter/research-article-role-of-ascorbic-acid-and-iron-in-mechanical-and-2J0XGTW7Rc
Publisher
De Gruyter Open
Copyright
© 2018 De Gruyter Open
eISSN
2391-5560
D.O.I.
10.1515/pacres-2017-0001
Publisher site
See Article on Publisher Site

Abstract

AbstractA trilayer film based on thermoplastic starch (TPS) for the core layer and poly(ε-caprolactone) (PCL) for the skin layers was obtained by coextrusion. Ascorbic acid and iron powder were added at respectively 15% and 1.5% w/w in the TPS layer for their capacity to act as oxygen scavenger, making the film usable as active food packaging. This study demonstrates that these compounds also play a role in the interactions between the different layers. FTIR measurements show that ascorbic acid migrates at the interface between TPS and PCL, where it acts as a compatibiliser between both polymers, probably by creating new interactions between polar functions of both polymers. This leads to a better adhesion of the different layers, demonstrated by the increase of the adhesion energy from 4.10−3 N·mm−1 for the multilayer film TPS-PCL to 12.10−3 N·mm−1 for the multilayer film containing the active components. Thanks to this compatibilising effect, the mechanical properties of the multilayer film containing ascorbic acid and iron are widely improved with an average maximal tensile strength of 7 MPa, against 3.7 MPa for the multilayer film without the active components and with an elongation at break of respectively 1450% against 290%. However, despite the hydrophobicity of PCL, the water sorption of the TPS-based layer is only slightly reduced. The multilayer film shows active oxygen scavenging properties but the rate of this reaction is divided by two compared to the active film without PCL layers (15 days to reach less than 1% oxygen for the active film without PCL layers and approximately 30 days to reach the same oxygen level with the multilayer active film).

Journal

Packaging Researchde Gruyter

Published: Feb 9, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off