Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells AbstractKidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS), thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI), as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1), and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA) and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Chemistry de Gruyter

Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells

Loading next page...
 
/lp/degruyter/regulatory-mechanism-of-ulinastatin-on-autophagy-of-macrophages-and-6sSnhUS4Kx
Publisher
de Gruyter
Copyright
© 2018 Ming Wu et al., published by De Gruyter
ISSN
2391-5420
eISSN
2391-5420
D.O.I.
10.1515/chem-2018-0025
Publisher site
See Article on Publisher Site

Abstract

AbstractKidney ischemia and hypoxia can cause renal cell apoptosis and activation of inflammatory cells, which lead to the release of inflammatory factors and ultimately result in the damage of kidney tissue and the whole body. Renal tubular cell and macrophage autophagy can reduce the production of reactive oxygen species (ROS), thereby reducing the activation of inflammatory cytoplasm and its key effector protein, caspase-1, which reduces the expression of IL-1β and IL-18 and other inflammatory factors. Ulinastatin (UTI), as a glycoprotein drug, inhibits the activity of multiple proteases and reduces myocardial damage caused by ischemia-reperfusion by upregulating autophagy. However, it can be raised by macrophage autophagy, reduce the production of ROS, and ultimately reduce the expression of inflammatory mediators, thereby reducing renal cell injury, promote renal function recovery is not clear. In this study, a series of cell experiments have shown that ulinastatin is reduced by regulating the autophagy of renal tubular epithelial cells and macrophages to reduce the production of reactive oxygen species and inflammatory factors (TNF-α, IL-1β and IL-1), and then, increase the activity of the cells under the sugar oxygen deprivation model. The simultaneous use of cellular autophagy agonists Rapamycin (RAPA) and ulinastatin has a synergistic effect on the production of reactive oxygen species and the expression of inflammatory factors.

Journal

Open Chemistryde Gruyter

Published: Apr 25, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off