Quasi-periodic fluctuation in Donchin’s speller signals and its potential use for asynchronous control

Quasi-periodic fluctuation in Donchin’s speller signals and its potential use for asynchronous... AbstractWhen we examine the event-related potential (ERP) responses of Donchin’s brain-computer interface (BCI) speller, a type of quasi-periodic fluctuation (FLUC) overlapping with the ERP components can be observed; this fluctuation is traditionally treated as interference. However, if the FLUC is detectable in a working BCI, it can be used for asynchronous control, i.e. to indicate whether the BCI is under the control state (CS) or under the non-control idle state (NC). Asynchronous control is an important issue to address to enable BCI’s practical use. In this paper, we examine the characteristics of the FLUC and explore the possibility of using the FLUC for asynchronous control of the BCI. For detecting the FLUC, we propose a method based on the power spectrum and evaluate the detection rates in a simulation. As a result, high true positive rates (TPRs) and low false positive rates (FPRs) are obtained. Our work reveals that the FLUC is of great value for implementing an asynchronous BCI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering / Biomedizinische Technik de Gruyter

Quasi-periodic fluctuation in Donchin’s speller signals and its potential use for asynchronous control

Loading next page...
 
/lp/degruyter/quasi-periodic-fluctuation-in-donchin-s-speller-signals-and-its-dA2GTPDedI
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1862-278X
eISSN
1862-278X
D.O.I.
10.1515/bmt-2016-0050
Publisher site
See Article on Publisher Site

Abstract

AbstractWhen we examine the event-related potential (ERP) responses of Donchin’s brain-computer interface (BCI) speller, a type of quasi-periodic fluctuation (FLUC) overlapping with the ERP components can be observed; this fluctuation is traditionally treated as interference. However, if the FLUC is detectable in a working BCI, it can be used for asynchronous control, i.e. to indicate whether the BCI is under the control state (CS) or under the non-control idle state (NC). Asynchronous control is an important issue to address to enable BCI’s practical use. In this paper, we examine the characteristics of the FLUC and explore the possibility of using the FLUC for asynchronous control of the BCI. For detecting the FLUC, we propose a method based on the power spectrum and evaluate the detection rates in a simulation. As a result, high true positive rates (TPRs) and low false positive rates (FPRs) are obtained. Our work reveals that the FLUC is of great value for implementing an asynchronous BCI.

Journal

Biomedical Engineering / Biomedizinische Technikde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off