Proteins with potential role in analgesic effect of spinal cord stimulation on neuropathic pain

Proteins with potential role in analgesic effect of spinal cord stimulation on neuropathic pain AbstractAimsWe aimed to find proteins of relevance to the prolonged analgesic effect of spinal cord stimulation (SCS) for patients with neuropathic pain.MethodsThe proteomes of cerebrospinal fluid (CSF) from 14 neuropathic pain patients using spinal cord stimulation (SCS) was compared to the CSF proteomes of the same patients when not using the stimulator. Samples were analyzed by dimethyl label and label free shotgun proteomics approach. Samples were prepared by immunoaffinity fractionation and then separated by reversed phase nanoliquid chromatography coupled to an electrospray ionization source and analyzed by high resolution tandem mass spectrometry. The proteins were comparatively quantified on the peptide level and ranked based on numbers of regulated peptides. Then the dimethyl and label free analysis results were combined. In order to group proteins by function and interactions, a functional enrichment network analysis was performed using the String (Search Tool for the Retrieval of Interacting Genes/Proteins) database on all significantly differentially expressed proteins.ResultsWe found 87 differentially expressed proteins. Network analysis showed a high level of enrichment in interactions between the proteins involved in platelet degranulation and wound healing with p-values 2.48E−11 and 4.58E−08. We also recognized two additional clusters related to complement and coagulation cascades and neuropeptides. None of these proteins have been implicated in SCS mechanism previously.ConclusionsUp- and down-regulations of immunological proteins and neuropeptides may explain the prolonged relief of neuropathic pain obtained after SCS. These findings contribute a new basis for understanding of SCS analgesic mechanism in human neuropathic pain. Further verification studies of these initial findings are needed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Proteins with potential role in analgesic effect of spinal cord stimulation on neuropathic pain

Loading next page...
 
/lp/degruyter/proteins-with-potential-role-in-analgesic-effect-of-spinal-cord-btL1dtK4s5
Publisher
De Gruyter
Copyright
© 2014 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2014.05.018
Publisher site
See Article on Publisher Site

Abstract

AbstractAimsWe aimed to find proteins of relevance to the prolonged analgesic effect of spinal cord stimulation (SCS) for patients with neuropathic pain.MethodsThe proteomes of cerebrospinal fluid (CSF) from 14 neuropathic pain patients using spinal cord stimulation (SCS) was compared to the CSF proteomes of the same patients when not using the stimulator. Samples were analyzed by dimethyl label and label free shotgun proteomics approach. Samples were prepared by immunoaffinity fractionation and then separated by reversed phase nanoliquid chromatography coupled to an electrospray ionization source and analyzed by high resolution tandem mass spectrometry. The proteins were comparatively quantified on the peptide level and ranked based on numbers of regulated peptides. Then the dimethyl and label free analysis results were combined. In order to group proteins by function and interactions, a functional enrichment network analysis was performed using the String (Search Tool for the Retrieval of Interacting Genes/Proteins) database on all significantly differentially expressed proteins.ResultsWe found 87 differentially expressed proteins. Network analysis showed a high level of enrichment in interactions between the proteins involved in platelet degranulation and wound healing with p-values 2.48E−11 and 4.58E−08. We also recognized two additional clusters related to complement and coagulation cascades and neuropeptides. None of these proteins have been implicated in SCS mechanism previously.ConclusionsUp- and down-regulations of immunological proteins and neuropeptides may explain the prolonged relief of neuropathic pain obtained after SCS. These findings contribute a new basis for understanding of SCS analgesic mechanism in human neuropathic pain. Further verification studies of these initial findings are needed.

Journal

Scandinavian Journal of Painde Gruyter

Published: Dec 29, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial