Prevention of renal ischemia/perfusion-induced renal and hepatic injury in adult male Albino rats by oxytocin: role of nitric oxide

Prevention of renal ischemia/perfusion-induced renal and hepatic injury in adult male Albino rats... AbstractBackground:Oxytocin (OT) has an anti-inflammatory and antioxidant effect in the different inflammatory models. The current study aimed to evaluate the protective function of OT in renal and hepatic damages triggered by renal ischemia/reperfusion (IR) in rats. Moreover, the effect of NG-nitro-l-arginine methyl ester (l-NAME) was investigated on the kidney and liver functions in renal IR model.Methods:Twenty-four rats were divided into four groups (six rats each) as follows: (1) Sham-operated group; (2) Renal IR group; (3) Renal IR+OT group; (4) Renal IR+OT+l-NAME. OT (1 mg/kg, i.p.) was administered 30 min prior to the induced ischemia and was repeated immediately before the reperfusion period. l-NAME (10 mg/kg, i.p.) was given 45 min before IR injury.Results:The results revealed that OT significantly attenuated the IR-induced elevations in the serum urea, creatinine, liver transaminases, and TNF-α levels, while nitric oxide (NO) and Bcl-2 levels were significantly increased compared with the IR group. OT also significantly compensated the decrease in the total antioxidant capacities (TAC) and lowered the elevated malondialdehyde (MDA) levels that were observed with renal IR in the renal and hepatic tissues.Conclusions:In conclusion, OT ameliorates renal and hepatic damages triggered by renal IR, and this defense involves the suppression of inflammation and apoptosis with regulation of oxidant-antioxidant status. In addition, administration of l-NAME prior to OT partially reversed the protective effect of OT ensuring that one of the protective effects of OT was through the NO production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Basic and Clinical Physiology and Pharmacology de Gruyter

Prevention of renal ischemia/perfusion-induced renal and hepatic injury in adult male Albino rats by oxytocin: role of nitric oxide

Loading next page...
 
/lp/degruyter/prevention-of-renal-ischemia-perfusion-induced-renal-and-hepatic-lE2EADr7iw
Publisher
De Gruyter
Copyright
©2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0286
eISSN
2191-0286
D.O.I.
10.1515/jbcpp-2016-0197
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Oxytocin (OT) has an anti-inflammatory and antioxidant effect in the different inflammatory models. The current study aimed to evaluate the protective function of OT in renal and hepatic damages triggered by renal ischemia/reperfusion (IR) in rats. Moreover, the effect of NG-nitro-l-arginine methyl ester (l-NAME) was investigated on the kidney and liver functions in renal IR model.Methods:Twenty-four rats were divided into four groups (six rats each) as follows: (1) Sham-operated group; (2) Renal IR group; (3) Renal IR+OT group; (4) Renal IR+OT+l-NAME. OT (1 mg/kg, i.p.) was administered 30 min prior to the induced ischemia and was repeated immediately before the reperfusion period. l-NAME (10 mg/kg, i.p.) was given 45 min before IR injury.Results:The results revealed that OT significantly attenuated the IR-induced elevations in the serum urea, creatinine, liver transaminases, and TNF-α levels, while nitric oxide (NO) and Bcl-2 levels were significantly increased compared with the IR group. OT also significantly compensated the decrease in the total antioxidant capacities (TAC) and lowered the elevated malondialdehyde (MDA) levels that were observed with renal IR in the renal and hepatic tissues.Conclusions:In conclusion, OT ameliorates renal and hepatic damages triggered by renal IR, and this defense involves the suppression of inflammation and apoptosis with regulation of oxidant-antioxidant status. In addition, administration of l-NAME prior to OT partially reversed the protective effect of OT ensuring that one of the protective effects of OT was through the NO production.

Journal

Journal of Basic and Clinical Physiology and Pharmacologyde Gruyter

Published: Nov 27, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial