Plasmonics for emerging quantum technologies

Plasmonics for emerging quantum technologies AbstractExpanding the frontiers of information processing technologies and, in particular, computing with ever-increasing speed and capacity has long been recognized as an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the universe, whereas optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever-increasing demands of miniaturization and energy-saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables the ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanophotonics de Gruyter

Plasmonics for emerging quantum technologies

Loading next page...
 
/lp/degruyter/plasmonics-for-emerging-quantum-technologies-c8TaS5VfKt
Publisher
De Gruyter
Copyright
©2017, N. Asger Mortensen et al., published by De Gruyter.
ISSN
2192-8614
eISSN
2192-8614
D.O.I.
10.1515/nanoph-2016-0179
Publisher site
See Article on Publisher Site

Abstract

AbstractExpanding the frontiers of information processing technologies and, in particular, computing with ever-increasing speed and capacity has long been recognized as an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the universe, whereas optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever-increasing demands of miniaturization and energy-saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables the ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions.

Journal

Nanophotonicsde Gruyter

Published: Jan 20, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off