Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by... AbstractHigh voltage electric discharge (HVED) in disperse system “hydrocarbon liquid – powder” due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10−6 to 10−7 m) and nanosized (from 10−7 to 10−9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10–20 %), hardness and wear-resistance (by 30–60 %) of obtained materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png High Temperature Materials and Processes de Gruyter

Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

Loading next page...
 
/lp/degruyter/plasma-methods-of-obtainment-of-multifunctional-composite-materials-E6C20Lq3v8
Publisher
De Gruyter
Copyright
© 2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0324
eISSN
2191-0324
D.O.I.
10.1515/htmp-2016-0049
Publisher site
See Article on Publisher Site

Abstract

AbstractHigh voltage electric discharge (HVED) in disperse system “hydrocarbon liquid – powder” due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10−6 to 10−7 m) and nanosized (from 10−7 to 10−9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10–20 %), hardness and wear-resistance (by 30–60 %) of obtained materials.

Journal

High Temperature Materials and Processesde Gruyter

Published: Sep 26, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off