PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system

PhKv a toxin isolated from the spider venom induces antinociception by inhibition of... AbstractBackground and aimsCholinergic agents cause antinociception by mimicking the release of acetylcholine (ACh) from spinal cholinergic nerves. PhKv is a peptide isolated from the venom of the armed spider Phoneutria nigriventer. It has an antiarrythmogenic activity that involves the enhanced release of acetylcholine. The aim of this study was to investigate whether PhKv had an antinociceptive action in mice.MethodsMale albino Swiss mice (25–35 g) were used in this study. The PhKv toxin was purified from a PhTx3 fraction of the Phoneutria nigriventer spider’s venom. Because of its peptide nature, PhKv is not orally available and it was delivered directly into the central nervous system by an intrathecal (i.t.) route. PhKV on the thermal and mechanical sensitivity was evaluated using plantar test apparatus and the up-and-down method. The analgesic effects of PhKv were studied in neuropathic pain (CCI) and in the peripheral capsicin test. In order to test whether PhKv interfered with the cholinergic system, the mice were pre-treated with atropine (5mg/kg, i.p.) or mecamylamine (0.001 mg/kg, i.p.) and the PhKv toxin (30 pmol/site i.t.) or neostigmine (100 pmol/site) were applied 15 min before the intraplantar capsaicin (1 nmol/paw) administrations. To investigate PhKv action on the AChE activities, was performed in vitro and ex vivo assay for AChE. For the in vitro experiments, mice spinal cord supernatants of tissue homogenates (1 mg/ml) were used as source of AChE activity. The AChE assay was monitored at 37 °C for 10 min in a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices) at 405 nm.ResultsPhKv (30 and 100pmol/site, i.t.) had no effect on the thermal or mechanical sensitivity thresholds. However, in a chronic constriction injury model of pain, PhKv (10pmol/site, i.t.) caused a robust reduction in mechanical withdrawal with an antinociceptive effect that lasted 4 h. A pretreatment in mice with PhKv (30pmol/site, i.t.) or neostigmine (100pmol/site, i.t.) 15min before an intraplantar injection of capsaicin (1 nmol/paw) caused a maximal antinociceptive effect of 69.5 ± 4.9% and 85 ± 2.5%, respectively. A pretreatment in mice with atropine; 5 mg/kg, i.p. or mecamylamine 0.001 mg/kg, i.p. inhibited a neostigimine and PhKv-induced antinociception, suggesting a cholinergic mechanism. Spinal acetylcholinesterase was inhibited by PhKv with ED50 of 7.6 (4.6–12.6 pmol/site, i.t.). PhKv also inhibited the in vitro AChE activity of spinal cord homogenates with an EC50 of 20.8 (11.6–37.3 nM), shifting the Km value from 0.06 mM to 18.5 mM, characterizing a competitive inhibition of AChE activity by PhKv.ConclusionsOur findings provide, to our knowledge, the first evidence that PhKv caused inhibition of AChE, it increased the ACh content at the neuronal synapses, leading to an activation of the cholinergic system and an antinociceptive response.ImplicationsStudies regarding the nociceptive mechanisms and the identification of potential targets for the treatment of pain have become top priorities. PhKv, by its action of stimulating the cholinergic receptors muscarinic and nicotinic system, reduces pain it may be an alternative for controlling the pain processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system

Loading next page...
 
/lp/degruyter/phkv-a-toxin-isolated-from-the-spider-venom-induces-antinociception-by-gzDSqK0zKx
Publisher
de Gruyter
Copyright
© 2017 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2017.09.019
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground and aimsCholinergic agents cause antinociception by mimicking the release of acetylcholine (ACh) from spinal cholinergic nerves. PhKv is a peptide isolated from the venom of the armed spider Phoneutria nigriventer. It has an antiarrythmogenic activity that involves the enhanced release of acetylcholine. The aim of this study was to investigate whether PhKv had an antinociceptive action in mice.MethodsMale albino Swiss mice (25–35 g) were used in this study. The PhKv toxin was purified from a PhTx3 fraction of the Phoneutria nigriventer spider’s venom. Because of its peptide nature, PhKv is not orally available and it was delivered directly into the central nervous system by an intrathecal (i.t.) route. PhKV on the thermal and mechanical sensitivity was evaluated using plantar test apparatus and the up-and-down method. The analgesic effects of PhKv were studied in neuropathic pain (CCI) and in the peripheral capsicin test. In order to test whether PhKv interfered with the cholinergic system, the mice were pre-treated with atropine (5mg/kg, i.p.) or mecamylamine (0.001 mg/kg, i.p.) and the PhKv toxin (30 pmol/site i.t.) or neostigmine (100 pmol/site) were applied 15 min before the intraplantar capsaicin (1 nmol/paw) administrations. To investigate PhKv action on the AChE activities, was performed in vitro and ex vivo assay for AChE. For the in vitro experiments, mice spinal cord supernatants of tissue homogenates (1 mg/ml) were used as source of AChE activity. The AChE assay was monitored at 37 °C for 10 min in a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices) at 405 nm.ResultsPhKv (30 and 100pmol/site, i.t.) had no effect on the thermal or mechanical sensitivity thresholds. However, in a chronic constriction injury model of pain, PhKv (10pmol/site, i.t.) caused a robust reduction in mechanical withdrawal with an antinociceptive effect that lasted 4 h. A pretreatment in mice with PhKv (30pmol/site, i.t.) or neostigmine (100pmol/site, i.t.) 15min before an intraplantar injection of capsaicin (1 nmol/paw) caused a maximal antinociceptive effect of 69.5 ± 4.9% and 85 ± 2.5%, respectively. A pretreatment in mice with atropine; 5 mg/kg, i.p. or mecamylamine 0.001 mg/kg, i.p. inhibited a neostigimine and PhKv-induced antinociception, suggesting a cholinergic mechanism. Spinal acetylcholinesterase was inhibited by PhKv with ED50 of 7.6 (4.6–12.6 pmol/site, i.t.). PhKv also inhibited the in vitro AChE activity of spinal cord homogenates with an EC50 of 20.8 (11.6–37.3 nM), shifting the Km value from 0.06 mM to 18.5 mM, characterizing a competitive inhibition of AChE activity by PhKv.ConclusionsOur findings provide, to our knowledge, the first evidence that PhKv caused inhibition of AChE, it increased the ACh content at the neuronal synapses, leading to an activation of the cholinergic system and an antinociceptive response.ImplicationsStudies regarding the nociceptive mechanisms and the identification of potential targets for the treatment of pain have become top priorities. PhKv, by its action of stimulating the cholinergic receptors muscarinic and nicotinic system, reduces pain it may be an alternative for controlling the pain processes.

Journal

Scandinavian Journal of Painde Gruyter

Published: Oct 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off