Perspectives in Pain Research 2014: Neuroinflammation and glial cell activation: The cause of transition from acute to chronic pain?

Perspectives in Pain Research 2014: Neuroinflammation and glial cell activation: The cause of... AbstractBackgroundIt is unknown why an acute pain condition under various circumstances can transition into a chronic pain condition.There has been a shift towards neuroinflammation and hence glial cell activations specifically in the dorsal root ganglion and spinal cord as a mechanism possibly driving the transition to chronic pain. This has led to a focus on non-neuronal cells in the peripheral and central nervous system. Besides infiltrating macrophages, Schwann cells and satellite glial cells release cytokines and therefore important mechanisms in the maintenance of pain. Activated Schwann cells, satellite glial cells, microglia, and astrocytes may contribute to pain sensitivity by releasing cytokines leading to altered neuronal function in the direction of sensitisation.Aims of this perspective paper1) Highlight the complex but important recent achievement in the area of neuroinflammation and pain at spinal cord level and in the dorsal root ganglion.2) Encourage further research which hopefully may provide better understanding of new key elements driving the transition from acute to chronic pain.Recent results in the area of neuroinflammation and painFollowing a sciatic nerve injury, local macrophages, and Schwann cells trigger an immune response immediately followed by recruitment of blood-derived immune cells. Schwann cells, active resident, and infiltrating macrophages release proinflammatory cytokines. Proinflammatory cytokines contribute to axonal damage and also stimulate spontaneous nociceptor activity. This results in activation of satellite glial cells leading to an immune response in the dorsal root ganglia driven by macrophages, lymphocytes and satellite cells. The anterograde signalling progresses centrally to activate spinal microglia with possible up regulation of glial-derived proinflammatory/pronociceptive mediators.An important aspect is extrasegmental spreading sensitisation where bilateral elevations in TNF-α, IL-6, and IL-10 are found in dorsal root ganglion in neuropathic models. Similarly in inflammatory pain models, bilateral up regulation occurs for TNF-α, IL-1 β, and p38 MAPK. Bilateral alterations in cytokine levels in the DRG and spinal cord may underlie the spread of pain to the uninjured side.An important aspect is how the opioids may interact with immune cells as opioid receptors are expressed by peripheral immune cells and thus can induce immune signaling changes. Furthermore, opioids may stimulate microglia cells to produce proinflammatory cytokines such as IL-1.ConclusionsThe present perspective paper indicates that neuroinflammation and the associated release of pro-inflammatory cytokines in dorsal root ganglion and at the spinal cord contribute to the transition from acute to chronic pain. Neuroinflammatory changes have not only been identified in the spinal cord and brainstem, but more recently, in the sensory ganglia and in the nerves as well. The glial cell activation may be responsible for contralateral spreading and possible widespread sensitisation.ImplicationsCommunication between glia and neurons is proposed to be a critical component of neuroinflammatory changes that may lead to chronic pain. Sensory ganglia neurons are surrounded by satellite glial cells but how communication between the cells contributes to altered pain sensitivity is still unknown. Better understanding may lead to new possibilities for (1) preventing development of chronic pain and (2) better pain management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Perspectives in Pain Research 2014: Neuroinflammation and glial cell activation: The cause of transition from acute to chronic pain?

Loading next page...
 
/lp/degruyter/perspectives-in-pain-research-2014-neuroinflammation-and-glial-cell-eJznEvaGhB
Publisher
De Gruyter
Copyright
© 2014 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2014.10.002
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundIt is unknown why an acute pain condition under various circumstances can transition into a chronic pain condition.There has been a shift towards neuroinflammation and hence glial cell activations specifically in the dorsal root ganglion and spinal cord as a mechanism possibly driving the transition to chronic pain. This has led to a focus on non-neuronal cells in the peripheral and central nervous system. Besides infiltrating macrophages, Schwann cells and satellite glial cells release cytokines and therefore important mechanisms in the maintenance of pain. Activated Schwann cells, satellite glial cells, microglia, and astrocytes may contribute to pain sensitivity by releasing cytokines leading to altered neuronal function in the direction of sensitisation.Aims of this perspective paper1) Highlight the complex but important recent achievement in the area of neuroinflammation and pain at spinal cord level and in the dorsal root ganglion.2) Encourage further research which hopefully may provide better understanding of new key elements driving the transition from acute to chronic pain.Recent results in the area of neuroinflammation and painFollowing a sciatic nerve injury, local macrophages, and Schwann cells trigger an immune response immediately followed by recruitment of blood-derived immune cells. Schwann cells, active resident, and infiltrating macrophages release proinflammatory cytokines. Proinflammatory cytokines contribute to axonal damage and also stimulate spontaneous nociceptor activity. This results in activation of satellite glial cells leading to an immune response in the dorsal root ganglia driven by macrophages, lymphocytes and satellite cells. The anterograde signalling progresses centrally to activate spinal microglia with possible up regulation of glial-derived proinflammatory/pronociceptive mediators.An important aspect is extrasegmental spreading sensitisation where bilateral elevations in TNF-α, IL-6, and IL-10 are found in dorsal root ganglion in neuropathic models. Similarly in inflammatory pain models, bilateral up regulation occurs for TNF-α, IL-1 β, and p38 MAPK. Bilateral alterations in cytokine levels in the DRG and spinal cord may underlie the spread of pain to the uninjured side.An important aspect is how the opioids may interact with immune cells as opioid receptors are expressed by peripheral immune cells and thus can induce immune signaling changes. Furthermore, opioids may stimulate microglia cells to produce proinflammatory cytokines such as IL-1.ConclusionsThe present perspective paper indicates that neuroinflammation and the associated release of pro-inflammatory cytokines in dorsal root ganglion and at the spinal cord contribute to the transition from acute to chronic pain. Neuroinflammatory changes have not only been identified in the spinal cord and brainstem, but more recently, in the sensory ganglia and in the nerves as well. The glial cell activation may be responsible for contralateral spreading and possible widespread sensitisation.ImplicationsCommunication between glia and neurons is proposed to be a critical component of neuroinflammatory changes that may lead to chronic pain. Sensory ganglia neurons are surrounded by satellite glial cells but how communication between the cells contributes to altered pain sensitivity is still unknown. Better understanding may lead to new possibilities for (1) preventing development of chronic pain and (2) better pain management.

Journal

Scandinavian Journal of Painde Gruyter

Published: Jan 1, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off