Parathormone stability in hemodialyzed patients and healthy subjects: comparison on non-centrifuged EDTA and serum samples with second- and third-generation assays

Parathormone stability in hemodialyzed patients and healthy subjects: comparison on... AbstractBackground:Parathyroid hormone (PTH) stability is important. Many studies have shown divergent results between EDTA and serum, which are mainly linked to differences in protocols or cut-offs used to determine whether or not PTH remained stable. No studies have yet compared PTH stability as measured by second- and third-generation assays on the same samples in hemodialyzed patients and healthy subjects.Methods:Five pairs of samples (EDTA and gel tubes) were obtained in 10 hemodialyzed patients before a dialysis session and in 10 healthy subjects. One pair was centrifuged and run directly to define the “T0”. Two pairs were kept at +4°C and two pairs were kept at +25°C. They were centrifuged after 4 and 18 h. Supernatant was kept at –80°C for 1 week. All samples were measured in a single batch, on Roche Cobas and DiaSorin XL second- and third-generation PTH assays. We used three different approaches to evaluate PTH stability: Wilcoxon test, an Acceptable Change Limit (ACL) according to ISO Guide 5725-6 and a Total Change Limit (TCL) derived from the sum of biological and technical variability according to WHO.Results:PTH decreased in all samples. Stability of PTH was mainly dependent on the way it was evaluated. Percentages of decrease were systematically lower in EDTA vs. serum. Wilcoxon and ACL showed that PTH was no more stable after 4 h at +4°C in EDTA or serum gel tubes. None of the subjects presented a PTH decrease higher than the TCL with EDTA plasma. In serum gel tubes, PTH was unstable only when kept at 25°C for 18 h.Conclusions:PTH seems more stable in EDTA than in serum gel tubes but only when samples have to stay unprocessed for a long period (18 h) at room temperature (25°C), which can happen when samples are delivered from external care centers. For all the other conditions, using serum gel tubes is recommended since calcium measurement, which is necessary for a good PTH results interpretation, can be achieved on the same tube. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Parathormone stability in hemodialyzed patients and healthy subjects: comparison on non-centrifuged EDTA and serum samples with second- and third-generation assays

Loading next page...
 
/lp/degruyter/parathormone-stability-in-hemodialyzed-patients-and-healthy-subjects-V0VliiB12F
Publisher
de Gruyter
Copyright
©2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
D.O.I.
10.1515/cclm-2016-0914
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Parathyroid hormone (PTH) stability is important. Many studies have shown divergent results between EDTA and serum, which are mainly linked to differences in protocols or cut-offs used to determine whether or not PTH remained stable. No studies have yet compared PTH stability as measured by second- and third-generation assays on the same samples in hemodialyzed patients and healthy subjects.Methods:Five pairs of samples (EDTA and gel tubes) were obtained in 10 hemodialyzed patients before a dialysis session and in 10 healthy subjects. One pair was centrifuged and run directly to define the “T0”. Two pairs were kept at +4°C and two pairs were kept at +25°C. They were centrifuged after 4 and 18 h. Supernatant was kept at –80°C for 1 week. All samples were measured in a single batch, on Roche Cobas and DiaSorin XL second- and third-generation PTH assays. We used three different approaches to evaluate PTH stability: Wilcoxon test, an Acceptable Change Limit (ACL) according to ISO Guide 5725-6 and a Total Change Limit (TCL) derived from the sum of biological and technical variability according to WHO.Results:PTH decreased in all samples. Stability of PTH was mainly dependent on the way it was evaluated. Percentages of decrease were systematically lower in EDTA vs. serum. Wilcoxon and ACL showed that PTH was no more stable after 4 h at +4°C in EDTA or serum gel tubes. None of the subjects presented a PTH decrease higher than the TCL with EDTA plasma. In serum gel tubes, PTH was unstable only when kept at 25°C for 18 h.Conclusions:PTH seems more stable in EDTA than in serum gel tubes but only when samples have to stay unprocessed for a long period (18 h) at room temperature (25°C), which can happen when samples are delivered from external care centers. For all the other conditions, using serum gel tubes is recommended since calcium measurement, which is necessary for a good PTH results interpretation, can be achieved on the same tube.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Jul 26, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off