Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Painful heat attenuates electrically induced muscle pain in men and women

Painful heat attenuates electrically induced muscle pain in men and women AabstractBackground and purposeWomen exhibit higher prevalence of most painful disorders. Several explanations have been proposed for this discrepancy, one being that endogenous pain modulatory pathways, which affect incoming nociceptive signals, act differently in men and women. A less efficient pain inhibitory system has been proposed as a contributing factor to explain why women exhibit higher prevalence of most painful disorders. The present study determined whether muscle pain, induced experimentally by electrical stimulation, is inhibited by a painful heat stimulus. This conditioned pain modulation (CPM) paradigm was used to determine whether women show signs of reduced inhibition compared to men.MethodsForty self-reported healthy individuals (20 female, 20 male) participated in a cross-over design with painful and non-painful heat as a conditioning stimulus. Test stimuli were painful intramuscular electrical stimulation of the tibialis anterior muscle at two intensities; low (1.1 × pain threshold) and high (1.6 × pain threshold). Painful conditioning was contact heat (45–49 ° C) to the contralateral forearm. Nonpainful conditioning was contact heat at 35 °C. Ten test stimuli were delivered in three blocks (before, during and after conditioning) in two sessions (painful and non-painful conditioning). The women were tested during days 12-14 of the menstrual cycle. This interval corresponds to the ovulatory phase of the menstrual cycle, the interval during which women are reported to show the largest inhibitory effects.ResultsTest stimuli were rated significantly lower during painful conditioning, compared with before conditioning. This was found for both low and high test stimulus intensities. Anonspecific attenuation was seen during non-painful conditioning for the low test stimulus intensity. Test stimuli were rated significantly lower also 3 min after conditioning, compared with before conditioning. The inhibitory effects were not different between men and women. Similar findings were obtained also if six non-CPM-responders (subjects rating test stimuli higher during conditioning than before conditioning) were excluded.Conclusions and implicationsThe present findings indicate that painful contact heat inhibits electrically induced muscle pain and that inhibition was not different between men and women, when women were tested in the interval 12-14 days after their last menstruation. Some inhibition of muscle pain was seen during non-painful conditioning, indicating that nonspecific inhibitory effects were triggered. Also the nonspecific inhibitory effects were similar in men and women. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Painful heat attenuates electrically induced muscle pain in men and women

Loading next page...
1
 
/lp/degruyter/painful-heat-attenuates-electrically-induced-muscle-pain-in-men-and-0sgLWQgMvK

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
© 2012 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
DOI
10.1016/j.sjpain.2012.04.006
Publisher site
See Article on Publisher Site

Abstract

AabstractBackground and purposeWomen exhibit higher prevalence of most painful disorders. Several explanations have been proposed for this discrepancy, one being that endogenous pain modulatory pathways, which affect incoming nociceptive signals, act differently in men and women. A less efficient pain inhibitory system has been proposed as a contributing factor to explain why women exhibit higher prevalence of most painful disorders. The present study determined whether muscle pain, induced experimentally by electrical stimulation, is inhibited by a painful heat stimulus. This conditioned pain modulation (CPM) paradigm was used to determine whether women show signs of reduced inhibition compared to men.MethodsForty self-reported healthy individuals (20 female, 20 male) participated in a cross-over design with painful and non-painful heat as a conditioning stimulus. Test stimuli were painful intramuscular electrical stimulation of the tibialis anterior muscle at two intensities; low (1.1 × pain threshold) and high (1.6 × pain threshold). Painful conditioning was contact heat (45–49 ° C) to the contralateral forearm. Nonpainful conditioning was contact heat at 35 °C. Ten test stimuli were delivered in three blocks (before, during and after conditioning) in two sessions (painful and non-painful conditioning). The women were tested during days 12-14 of the menstrual cycle. This interval corresponds to the ovulatory phase of the menstrual cycle, the interval during which women are reported to show the largest inhibitory effects.ResultsTest stimuli were rated significantly lower during painful conditioning, compared with before conditioning. This was found for both low and high test stimulus intensities. Anonspecific attenuation was seen during non-painful conditioning for the low test stimulus intensity. Test stimuli were rated significantly lower also 3 min after conditioning, compared with before conditioning. The inhibitory effects were not different between men and women. Similar findings were obtained also if six non-CPM-responders (subjects rating test stimuli higher during conditioning than before conditioning) were excluded.Conclusions and implicationsThe present findings indicate that painful contact heat inhibits electrically induced muscle pain and that inhibition was not different between men and women, when women were tested in the interval 12-14 days after their last menstruation. Some inhibition of muscle pain was seen during non-painful conditioning, indicating that nonspecific inhibitory effects were triggered. Also the nonspecific inhibitory effects were similar in men and women.

Journal

Scandinavian Journal of Painde Gruyter

Published: Apr 1, 2013

Keywords: Conditioned pain modulation; Heat; Muscle pain; Pain modulation; Gender differences; Diffuse noxious inhibitory controls; Pain inhibition

There are no references for this article.