Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment

Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric... AbstractGinsenoside Rg3(S) is a primary bioactive component in ginseng, which has pharmacological effects and nutritional activities. In the present study, pulsed electric field (PEF)-assisted acid hydrolysis processing was used to convert major ginsenoside Rb1 to minor ginsenoside Rg3(S). The optimum parameters of PEF assisted acid hydrolysis were analyzed by response surface methodology (RSM). The optimum processing conditions were: electric field intensity, 20 kVcm−1; acid concentration, 0.25 mol/L; pulse number, 10. The conversion rate of ginsenoside Rg3(S) achieved 68.58%, in accordance to the predicted value. The structure of hydrolyzed product was confirmed by 13C-NMR. The results suggested that PEF-assisted acid hydrolysis significantly enhanced conversion rate of ginsenoside Rg3(S). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Chemistry de Gruyter

Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment

Loading next page...
 
/lp/degruyter/optimum-conversion-of-major-ginsenoside-rb1-to-minor-ginsenoside-rg3-s-S4j3UTAGVJ
Publisher
De Gruyter
Copyright
© 2018 Chengwen Lu, Yongguang Yin, published by De Gruyter
ISSN
2391-5420
eISSN
2391-5420
D.O.I.
10.1515/chem-2018-0031
Publisher site
See Article on Publisher Site

Abstract

AbstractGinsenoside Rg3(S) is a primary bioactive component in ginseng, which has pharmacological effects and nutritional activities. In the present study, pulsed electric field (PEF)-assisted acid hydrolysis processing was used to convert major ginsenoside Rb1 to minor ginsenoside Rg3(S). The optimum parameters of PEF assisted acid hydrolysis were analyzed by response surface methodology (RSM). The optimum processing conditions were: electric field intensity, 20 kVcm−1; acid concentration, 0.25 mol/L; pulse number, 10. The conversion rate of ginsenoside Rg3(S) achieved 68.58%, in accordance to the predicted value. The structure of hydrolyzed product was confirmed by 13C-NMR. The results suggested that PEF-assisted acid hydrolysis significantly enhanced conversion rate of ginsenoside Rg3(S).

Journal

Open Chemistryde Gruyter

Published: Apr 10, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off