Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations

Optimization of multi-sandwich-panel composite structures for minimum weight with strength and... AbstractA genetic algorithm-based method is proposed to globally optimize the stacking sequence of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations. The prerequisites for the continuity between sandwich panels are first studied. To implement the summarized continuity rules in the evolutionary optimization, three newly constructed chromosomes are developed to encode the global stacking sequence with no additional repair. Genetic operators, including specialized mutation, swapping and crossover operators, are also developed to effectively explore the design space and keep the continuity rules followed. The Hashin criterion and maximum stress criterion are used to evaluate the strength of sandwich panels. A typical multi-sandwich-panel composite structure with identical and different core thicknesses is optimized to verify the validity and efficiency of the proposed method. It is found that much lighter solutions are obtained with an acceptable efficiency in all cases. It is also found that the weight of the multi-sandwich-panel composite structures can be further reduced when the core thicknesses are not identical. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science and Engineering of Composite Materials de Gruyter

Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations

Loading next page...
 
/lp/degruyter/optimization-of-multi-sandwich-panel-composite-structures-for-minimum-DrqOmZ0i10
Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0359
eISSN
2191-0359
D.O.I.
10.1515/secm-2015-0171
Publisher site
See Article on Publisher Site

Abstract

AbstractA genetic algorithm-based method is proposed to globally optimize the stacking sequence of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations. The prerequisites for the continuity between sandwich panels are first studied. To implement the summarized continuity rules in the evolutionary optimization, three newly constructed chromosomes are developed to encode the global stacking sequence with no additional repair. Genetic operators, including specialized mutation, swapping and crossover operators, are also developed to effectively explore the design space and keep the continuity rules followed. The Hashin criterion and maximum stress criterion are used to evaluate the strength of sandwich panels. A typical multi-sandwich-panel composite structure with identical and different core thicknesses is optimized to verify the validity and efficiency of the proposed method. It is found that much lighter solutions are obtained with an acceptable efficiency in all cases. It is also found that the weight of the multi-sandwich-panel composite structures can be further reduced when the core thicknesses are not identical.

Journal

Science and Engineering of Composite Materialsde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off