Online quality evaluation of tissue paper structure on new generation tissue machines

Online quality evaluation of tissue paper structure on new generation tissue machines AbstractAt present, the tissue paper manufacturing is mostly based on the dry crepe technology. During the last decade, the manufacturers have introduced new tissue machines concepts that increase the softness, bulk, and absorption capacity. Such machines produce a strong regular three-dimensional (3D) structure to the sheet before the Yankee cylinder. At present, the quality of the 3D structure is not evaluated, or it is evaluated only subjectively at the mill. This is mostly because of the difficulties to separate reliably the regular 3D pattern from other variations. This paper introduces a frequency analysis based method which separates the surface profile variances in tissue paper to the creping, to the regular 3D pattern and to the residual variation. The 3D surface profiles and their variances were determined online with the photometric stereo method. We show that the introduced analysis method evaluates the variance portions reliably and the results are consistent with the visual perception of the 3D surfaces. In one particular product, the regular 3D pattern explains 74 % of total surface variance; the creping explains 10 % and residual variations 16 %. Furthermore, the creping and residual variances are quite stable over time whereas the variance of the regular 3D pattern fluctuates significantly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nordic Pulp & Paper Research Journal de Gruyter

Online quality evaluation of tissue paper structure on new generation tissue machines

Loading next page...
 
/lp/degruyter/online-quality-evaluation-of-tissue-paper-structure-on-new-generation-riF1sZWP1Z
Publisher
De Gruyter Oldenbourg
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0283-2631
eISSN
2000-0669
D.O.I.
10.1515/npprj-2018-3004
Publisher site
See Article on Publisher Site

Abstract

AbstractAt present, the tissue paper manufacturing is mostly based on the dry crepe technology. During the last decade, the manufacturers have introduced new tissue machines concepts that increase the softness, bulk, and absorption capacity. Such machines produce a strong regular three-dimensional (3D) structure to the sheet before the Yankee cylinder. At present, the quality of the 3D structure is not evaluated, or it is evaluated only subjectively at the mill. This is mostly because of the difficulties to separate reliably the regular 3D pattern from other variations. This paper introduces a frequency analysis based method which separates the surface profile variances in tissue paper to the creping, to the regular 3D pattern and to the residual variation. The 3D surface profiles and their variances were determined online with the photometric stereo method. We show that the introduced analysis method evaluates the variance portions reliably and the results are consistent with the visual perception of the 3D surfaces. In one particular product, the regular 3D pattern explains 74 % of total surface variance; the creping explains 10 % and residual variations 16 %. Furthermore, the creping and residual variances are quite stable over time whereas the variance of the regular 3D pattern fluctuates significantly.

Journal

Nordic Pulp & Paper Research Journalde Gruyter

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off