On the q-Lie group of q-Appell polynomial matrices and related factorizations

On the q-Lie group of q-Appell polynomial matrices and related factorizations AbstractIn the spirit of our earlier paper [10] and Zhang and Wang [16],we introduce the matrix of multiplicative q-Appell polynomials of order M ∈ ℤ. This is the representation of the respective q-Appell polynomials in ke-ke basis. Based on the fact that the q-Appell polynomials form a commutative ring [11], we prove that this set constitutes a q-Lie group with two dual q-multiplications in the sense of [9]. A comparison with earlier results on q-Pascal matrices gives factorizations according to [7], which are specialized to q-Bernoulli and q-Euler polynomials.We also show that the corresponding q-Bernoulli and q-Euler matrices form q-Lie subgroups. In the limit q → 1 we obtain corresponding formulas for Appell polynomial matrices.We conclude by presenting the commutative ring of generalized q-Pascal functional matrices,which operates on all functions f ∈ C∞q . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Special Matrices de Gruyter

On the q-Lie group of q-Appell polynomial matrices and related factorizations

Loading next page...
 
/lp/degruyter/on-the-q-lie-group-of-q-appell-polynomial-matrices-and-related-GrY7YAlosj
Publisher
de Gruyter
Copyright
© 2018, published by De Gruyter
eISSN
2300-7451
D.O.I.
10.1515/spma-2018-0009
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the spirit of our earlier paper [10] and Zhang and Wang [16],we introduce the matrix of multiplicative q-Appell polynomials of order M ∈ ℤ. This is the representation of the respective q-Appell polynomials in ke-ke basis. Based on the fact that the q-Appell polynomials form a commutative ring [11], we prove that this set constitutes a q-Lie group with two dual q-multiplications in the sense of [9]. A comparison with earlier results on q-Pascal matrices gives factorizations according to [7], which are specialized to q-Bernoulli and q-Euler polynomials.We also show that the corresponding q-Bernoulli and q-Euler matrices form q-Lie subgroups. In the limit q → 1 we obtain corresponding formulas for Appell polynomial matrices.We conclude by presenting the commutative ring of generalized q-Pascal functional matrices,which operates on all functions f ∈ C∞q .

Journal

Special Matricesde Gruyter

Published: Mar 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off