On the efficient simulation of the left-tail of the sum of correlated log-normal variates

On the efficient simulation of the left-tail of the sum of correlated log-normal variates AbstractThe sum of log-normal variates is encountered in many challenging applications such as performance analysis of wireless communication systems and financial engineering. Several approximation methods have been reported in the literature. However, these methods are not accurate in the tail regions. These regions are of primordial interest as small probability values have to be evaluated with high precision. Variance reduction techniques are known to yield accurate, yet efficient, estimates of small probability values. Most of the existing approaches have focused on estimating the right-tail of the sum of log-normal random variables (RVs). Here, we instead consider the left-tail of the sum of correlated log-normal variates with Gaussian copula, under a mild assumption on the covariance matrix. We propose an estimator combining an existing mean-shifting importance sampling approach with a control variate technique. This estimator has an asymptotically vanishing relative error, which represents a major finding in the context of the left-tail simulation of the sum of log-normal RVs. Finally, we perform simulations to evaluate the performances of the proposed estimator in comparison with existing ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monte Carlo Methods and Applications de Gruyter

On the efficient simulation of the left-tail of the sum of correlated log-normal variates

Loading next page...
 
/lp/degruyter/on-the-efficient-simulation-of-the-left-tail-of-the-sum-of-correlated-DNnVevJ0Pz
Publisher
De Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1569-3961
eISSN
1569-3961
D.O.I.
10.1515/mcma-2018-0009
Publisher site
See Article on Publisher Site

Abstract

AbstractThe sum of log-normal variates is encountered in many challenging applications such as performance analysis of wireless communication systems and financial engineering. Several approximation methods have been reported in the literature. However, these methods are not accurate in the tail regions. These regions are of primordial interest as small probability values have to be evaluated with high precision. Variance reduction techniques are known to yield accurate, yet efficient, estimates of small probability values. Most of the existing approaches have focused on estimating the right-tail of the sum of log-normal random variables (RVs). Here, we instead consider the left-tail of the sum of correlated log-normal variates with Gaussian copula, under a mild assumption on the covariance matrix. We propose an estimator combining an existing mean-shifting importance sampling approach with a control variate technique. This estimator has an asymptotically vanishing relative error, which represents a major finding in the context of the left-tail simulation of the sum of log-normal RVs. Finally, we perform simulations to evaluate the performances of the proposed estimator in comparison with existing ones.

Journal

Monte Carlo Methods and Applicationsde Gruyter

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off