On a viscous two-fluid channel flow including evaporation

On a viscous two-fluid channel flow including evaporation AbstractIn this contribution a particular plane steady-state channel flow including evaporation effects is investigated from analytical point of view. The channel is assumed to be horizontal. The motion of two heavy viscous immiscible fluids is governed by a free boundary value problem for a coupled system of Navier-Stokes and Stephan equations. The flow domain is unbounded in two directions and the free interface separating partially both liquids is semi-infinite, i.e. infinite in one direction. The free interface begins in some point Q where the half-line Σ1 separating the two parts of the channel in front of Q ends. Existence and uniqueness of a suitable solution in weighted HÖLDER spaces can be proved for small data (i.e. small fluxes) of the problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Mathematics de Gruyter

On a viscous two-fluid channel flow including evaporation

Loading next page...
 
/lp/degruyter/on-a-viscous-two-fluid-channel-flow-including-evaporation-FfmZySUMn7
Publisher
De Gruyter Open
Copyright
© 2018 Socolowsky
ISSN
2391-5455
eISSN
2391-5455
D.O.I.
10.1515/math-2018-0001
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this contribution a particular plane steady-state channel flow including evaporation effects is investigated from analytical point of view. The channel is assumed to be horizontal. The motion of two heavy viscous immiscible fluids is governed by a free boundary value problem for a coupled system of Navier-Stokes and Stephan equations. The flow domain is unbounded in two directions and the free interface separating partially both liquids is semi-infinite, i.e. infinite in one direction. The free interface begins in some point Q where the half-line Σ1 separating the two parts of the channel in front of Q ends. Existence and uniqueness of a suitable solution in weighted HÖLDER spaces can be proved for small data (i.e. small fluxes) of the problem.

Journal

Open Mathematicsde Gruyter

Published: Jan 31, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off