Numerical prediction of thermal conductivity in ZrB2-particulate-reinforced epoxy composites based on finite element models

Numerical prediction of thermal conductivity in ZrB2-particulate-reinforced epoxy composites... AbstractEpoxy composites reinforced by Zirconium diboride (ZrB2) particles were investigated by finite element models (FEMs). It helped to explore the relationship between the thermal conductivity of composites and the volume fraction, size, shape, orientation, and arrangement of the ZrB2 particles. The results showed that the thermal conductivity performance of composites was improved effectively when filled with ZrB2 particles. Specifically, epoxy composites filled with 50 vol% spherical ZrB2 particles had 12.05 times the thermal conductivity of epoxy resin. At the same volume fraction, the number of ZrB2 particles in the epoxy matrix has little influence on thermal conductivity due to the dimensionless models. At a high volume fraction, rectangular ZrB2 particles improved thermal conductivity more effectively than spherical particles. In the comparison of thermal conductivities among composites reinforced by rectangular fillers, the thermal conductivities of composites were clearly affected by the length-width ratios of fillers, and this effect was monotonically increasing. The vertical orientations of particles could conduct heat most effectively compared with slant and parallel orientations. The agglomerate distribution of ZrB2 particles has the negative effect of thermal diffusion in a certain direction compared with homogeneous distribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science and Engineering of Composite Materials de Gruyter

Numerical prediction of thermal conductivity in ZrB2-particulate-reinforced epoxy composites based on finite element models

Loading next page...
 
/lp/degruyter/numerical-prediction-of-thermal-conductivity-in-zrb2-particulate-0Fose05dPm
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0359
eISSN
2191-0359
D.O.I.
10.1515/secm-2015-0288
Publisher site
See Article on Publisher Site

Abstract

AbstractEpoxy composites reinforced by Zirconium diboride (ZrB2) particles were investigated by finite element models (FEMs). It helped to explore the relationship between the thermal conductivity of composites and the volume fraction, size, shape, orientation, and arrangement of the ZrB2 particles. The results showed that the thermal conductivity performance of composites was improved effectively when filled with ZrB2 particles. Specifically, epoxy composites filled with 50 vol% spherical ZrB2 particles had 12.05 times the thermal conductivity of epoxy resin. At the same volume fraction, the number of ZrB2 particles in the epoxy matrix has little influence on thermal conductivity due to the dimensionless models. At a high volume fraction, rectangular ZrB2 particles improved thermal conductivity more effectively than spherical particles. In the comparison of thermal conductivities among composites reinforced by rectangular fillers, the thermal conductivities of composites were clearly affected by the length-width ratios of fillers, and this effect was monotonically increasing. The vertical orientations of particles could conduct heat most effectively compared with slant and parallel orientations. The agglomerate distribution of ZrB2 particles has the negative effect of thermal diffusion in a certain direction compared with homogeneous distribution.

Journal

Science and Engineering of Composite Materialsde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off