Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles... AbstractThis work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs (~149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1–100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanophotonics de Gruyter

Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

Loading next page...
 
/lp/degruyter/novel-and-versatile-solid-state-chemiluminescence-sensor-based-on-tio2-JklItYtzGo
Publisher
De Gruyter
Copyright
©2018 Entesar Al-Hetlani et al., published by De Gruyter, Berlin/Boston
ISSN
2192-8614
eISSN
2192-8614
D.O.I.
10.1515/nanoph-2017-0104
Publisher site
See Article on Publisher Site

Abstract

AbstractThis work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs (~149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1–100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

Journal

Nanophotonicsde Gruyter

Published: Feb 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off