Multifactorial assessment of measurement errors affecting intraoral quantitative sensory testing reliability

Multifactorial assessment of measurement errors affecting intraoral quantitative sensory testing... AbstractBackground and purpose (aims)Measurement error of intraoral quantitative sensory testing (QST) has been assessed using traditional methods for reliability, such as intraclass correlation coefficients (ICCs). Most studies reporting QST reliability focused on assessingone source of measurement error at a time, e.g., inter- or intra-examiner (test–retest) reliabilities and employed two examiners to test inter-examiner reliability. The present study used a complex design with multiple examiners with the aim of assessing the reliability of intraoral QST taking account of multiple sources of error simultaneously.MethodsFour examiners of varied experience assessed 12 healthy participants in two visits separated by 48 h. Seven QST procedures to determine sensory thresholds were used: cold detection (CDT), warmth detection (WDT), cold pain (CPT), heat pain (HPT), mechanical detection (MDT), mechanical pain (MPT) and pressure pain (PPT). Mixed linear models were used to estimate variance components for reliability assessment; dependability coefficients were used to simulate alternative test scenarios.ResultsMost intraoral QST variability arose from differences between participants (8.8–30.5%), differences between visits within participant (4.6–52.8%), and error (13.3–28.3%). For QST procedures other than CDT and MDT, increasing the number of visits with a single examiner performing the procedures would lead to improved dependability (dependability coefficient ranges: single visit, four examiners = 0.12–0.54; four visits, single examiner = 0.27–0.68). A wide range of reliabilities for QST procedures, as measured by ICCs, was noted for inter- (0.39–0.80) and intra-examiner (0.10–0.62) variation.ConclusionReliability of sensory testing can be better assessed by measuring multiple sources of error simultaneously instead of focusing on one source at a time. In experimental settings, large numbers of participants are needed to obtain accurate estimates of treatment effects based on QST measurements. This is different from clinical use, where variation between persons (the person main effect) is not a concern because clinical measurements are done on a single person.ImplicationsFuture studies assessing sensorytestingreliabilityinboth clinicaland experimental settings would benefit from routinely measuring multiple sources of error. The methods and results of this study can be used by clinical researchers to improve assessment of measurement error related to intraoral sensorytesting. This should lead to improved resource allocation when designing studies that use intraoral quantitative sensory testing in clinical and experimental settings.© 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Multifactorial assessment of measurement errors affecting intraoral quantitative sensory testing reliability

Loading next page...
 
/lp/degruyter/multifactorial-assessment-of-measurement-errors-affecting-intraoral-0dX3cIDsrm
Publisher
De Gruyter
Copyright
© 2017 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2017.03.007
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground and purpose (aims)Measurement error of intraoral quantitative sensory testing (QST) has been assessed using traditional methods for reliability, such as intraclass correlation coefficients (ICCs). Most studies reporting QST reliability focused on assessingone source of measurement error at a time, e.g., inter- or intra-examiner (test–retest) reliabilities and employed two examiners to test inter-examiner reliability. The present study used a complex design with multiple examiners with the aim of assessing the reliability of intraoral QST taking account of multiple sources of error simultaneously.MethodsFour examiners of varied experience assessed 12 healthy participants in two visits separated by 48 h. Seven QST procedures to determine sensory thresholds were used: cold detection (CDT), warmth detection (WDT), cold pain (CPT), heat pain (HPT), mechanical detection (MDT), mechanical pain (MPT) and pressure pain (PPT). Mixed linear models were used to estimate variance components for reliability assessment; dependability coefficients were used to simulate alternative test scenarios.ResultsMost intraoral QST variability arose from differences between participants (8.8–30.5%), differences between visits within participant (4.6–52.8%), and error (13.3–28.3%). For QST procedures other than CDT and MDT, increasing the number of visits with a single examiner performing the procedures would lead to improved dependability (dependability coefficient ranges: single visit, four examiners = 0.12–0.54; four visits, single examiner = 0.27–0.68). A wide range of reliabilities for QST procedures, as measured by ICCs, was noted for inter- (0.39–0.80) and intra-examiner (0.10–0.62) variation.ConclusionReliability of sensory testing can be better assessed by measuring multiple sources of error simultaneously instead of focusing on one source at a time. In experimental settings, large numbers of participants are needed to obtain accurate estimates of treatment effects based on QST measurements. This is different from clinical use, where variation between persons (the person main effect) is not a concern because clinical measurements are done on a single person.ImplicationsFuture studies assessing sensorytestingreliabilityinboth clinicaland experimental settings would benefit from routinely measuring multiple sources of error. The methods and results of this study can be used by clinical researchers to improve assessment of measurement error related to intraoral sensorytesting. This should lead to improved resource allocation when designing studies that use intraoral quantitative sensory testing in clinical and experimental settings.© 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Journal

Scandinavian Journal of Painde Gruyter

Published: Dec 29, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off