Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric patients

Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric... AbstractWearable home-monitoring devices acquiring various biosignals such as the electrocardiogram, photoplethysmogram, electromyogram, respirational activity and movements have become popular in many fields of research, medical diagnostics and commercial applications. Especially ambulatory settings introduce still unsolved challenges to the development of sensor hardware and smart signal processing approaches. This work gives a detailed insight into a novel wireless body sensor network and addresses critical aspects such as signal quality, synchronicity among multiple devices as well as the system’s overall capabilities and limitations in cardiovascular monitoring. An early sign of typical cardiovascular diseases is often shown by disturbed autonomic regulations such as orthostatic intolerance. In that context, blood pressure measurements play an important role to observe abnormalities like hypo- or hypertensions. Non-invasive and unobtrusive blood pressure monitoring still poses a significant challenge, promoting alternative approaches including pulse wave velocity considerations. In the scope of this work, the presented hardware is applied to demonstrate the continuous extraction of multi modal parameters like pulse arrival time within a preliminary clinical study. A Schellong test to diagnose orthostatic hypotension which is typically based on blood pressure cuff measurements has been conducted, serving as an application that might significantly benefit from novel multi-modal measurement principles. It is further shown that the system’s synchronicity is as precise as 30 μs and that the integrated analog preprocessing circuits and additional accelerometer data provide significant advantages in ambulatory measurement environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering / Biomedizinische Technik de Gruyter

Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric patients

Loading next page...
 
/lp/degruyter/multi-modal-signal-acquisition-using-a-synchronized-wireless-body-bZa2AW4FaI
Publisher
de Gruyter
Copyright
©2016 by De Gruyter
ISSN
1862-278X
eISSN
1862-278X
D.O.I.
10.1515/bmt-2014-0178
Publisher site
See Article on Publisher Site

Abstract

AbstractWearable home-monitoring devices acquiring various biosignals such as the electrocardiogram, photoplethysmogram, electromyogram, respirational activity and movements have become popular in many fields of research, medical diagnostics and commercial applications. Especially ambulatory settings introduce still unsolved challenges to the development of sensor hardware and smart signal processing approaches. This work gives a detailed insight into a novel wireless body sensor network and addresses critical aspects such as signal quality, synchronicity among multiple devices as well as the system’s overall capabilities and limitations in cardiovascular monitoring. An early sign of typical cardiovascular diseases is often shown by disturbed autonomic regulations such as orthostatic intolerance. In that context, blood pressure measurements play an important role to observe abnormalities like hypo- or hypertensions. Non-invasive and unobtrusive blood pressure monitoring still poses a significant challenge, promoting alternative approaches including pulse wave velocity considerations. In the scope of this work, the presented hardware is applied to demonstrate the continuous extraction of multi modal parameters like pulse arrival time within a preliminary clinical study. A Schellong test to diagnose orthostatic hypotension which is typically based on blood pressure cuff measurements has been conducted, serving as an application that might significantly benefit from novel multi-modal measurement principles. It is further shown that the system’s synchronicity is as precise as 30 μs and that the integrated analog preprocessing circuits and additional accelerometer data provide significant advantages in ambulatory measurement environments.

Journal

Biomedical Engineering / Biomedizinische Technikde Gruyter

Published: Feb 1, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off