Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Metamaterial superconductors

Metamaterial superconductors AbstractSearching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor with Tc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve the Tc of other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projected Tc appears to reach ~250 K. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanophotonics de Gruyter

Metamaterial superconductors

Nanophotonics , Volume 7 (5): 24 – May 24, 2018

Loading next page...
 
/lp/degruyter/metamaterial-superconductors-J0FmMQ2uvx

References (3)

Publisher
de Gruyter
Copyright
©2018 Igor I. Smolyaninov et al., published by De Gruyter, Berlin/Boston
ISSN
2192-8614
eISSN
2192-8614
DOI
10.1515/nanoph-2017-0115
Publisher site
See Article on Publisher Site

Abstract

AbstractSearching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor with Tc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve the Tc of other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projected Tc appears to reach ~250 K.

Journal

Nanophotonicsde Gruyter

Published: May 24, 2018

There are no references for this article.