Mechanisms of visceral pain in health and functional gastrointestinal disorders

Mechanisms of visceral pain in health and functional gastrointestinal disorders AbstractBackground and aimsChronic visceral pain is common both in patients with identifiable organic disease and also in those without any structural, biochemical or immunological abnormality such as in the functional gastrointestinal disorders (FGIDs). We aim to provide a contemporaneous summary of pathways involved in visceral nociception and how a variety of mechanisms may influence an individual’s experience of visceral pain.MethodsIn this narrative review, we have brought together evidence through a detailed search of Medline in addition to using our experience and exposure to recent research developments from ourselves and other research groups.ResultsFGIDs are a heterogeneous group of disorders whose aetiology largely remains an enigma. The germane hypothesis for the genesis and maintenance of chronic visceral pain in FGIDs is the concept of visceral hypersensitivity. A number of peripheral and central mechanisms have been proposed to account for this epiphenomenon. In the periphery, inflammatory mediators activate and sensitize nociceptive afferent nerves by reducing their transduction thresholds and by inducing the expression and recruitment of hitherto silent nociceptors culminating in an increase in pain sensitivity at the site of injury known as primary hyperalgesia. Centrally, secondary hyperalgesia, defined as an increase in pain sensitivity in anatomically distinct sites, occurs at the level of the spinal dorsal horn. Moreover, the stress responsive physiological systems, genetic and psychological factors may modulate the experience of visceral pain. We also address some novel aetiological concepts in FGIDs, namely the gastrointestinal microbiota, connective tissue abnormalities and the gastrointestinal neuromuscular disorders. Firstly, the gastrointestinal microbiota is a diverse and dynamic ecosystem, that safeguards the host from external pathogens, aids in the metabolism of polysaccharides and lipids, modulates intestinal motility, in addition to modulating visceral perception. Secondly, connective tissue disorders, which traditionally have been considered to be confined largely to the musculoskeletal system, have an increasing evidence base demonstrating the presence of visceral manifestations. Since the sensorimotor apparatus of the GI tract is embedded within connective tissue it should not be surprising that such disorder may result in visceral pain and abnormal gut motility. Thirdly, gastrointestinal neuromuscular diseases refer to a heterogeneous group of disorders in which symptoms arise from impaired GI motor activity often manifesting as abnormal transit with or without radiological evidence of transient or persistent dilation of the viscera. Although a number of these are readily recognizable, such as achalasia or Hirschsprung’s disease, the cause in a number of patients is not. An international working group has recently addressed this “gap”, providing a comprehensive morphologically based diagnostic criteria.Conclusions/implicationsAlthough marked advances have been made in understanding the mechanisms that contribute to the development and maintenance of visceral pain, many interventions have failed to produce tangible improvement in patient outcomes. In the last part of this review we highlight an emerging approach that has allowed the definition and delineation of temporally stable visceral pain clusters, which may improve participant homogeneity in future studies, potentially facilitate stratification of treatment in FGID and lead to improvements in diagnostic criteria and outcomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Mechanisms of visceral pain in health and functional gastrointestinal disorders

Loading next page...
 
/lp/degruyter/mechanisms-of-visceral-pain-in-health-and-functional-gastrointestinal-50Xsy8LP0E
Publisher
de Gruyter
Copyright
© 2014 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2014.01.002
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground and aimsChronic visceral pain is common both in patients with identifiable organic disease and also in those without any structural, biochemical or immunological abnormality such as in the functional gastrointestinal disorders (FGIDs). We aim to provide a contemporaneous summary of pathways involved in visceral nociception and how a variety of mechanisms may influence an individual’s experience of visceral pain.MethodsIn this narrative review, we have brought together evidence through a detailed search of Medline in addition to using our experience and exposure to recent research developments from ourselves and other research groups.ResultsFGIDs are a heterogeneous group of disorders whose aetiology largely remains an enigma. The germane hypothesis for the genesis and maintenance of chronic visceral pain in FGIDs is the concept of visceral hypersensitivity. A number of peripheral and central mechanisms have been proposed to account for this epiphenomenon. In the periphery, inflammatory mediators activate and sensitize nociceptive afferent nerves by reducing their transduction thresholds and by inducing the expression and recruitment of hitherto silent nociceptors culminating in an increase in pain sensitivity at the site of injury known as primary hyperalgesia. Centrally, secondary hyperalgesia, defined as an increase in pain sensitivity in anatomically distinct sites, occurs at the level of the spinal dorsal horn. Moreover, the stress responsive physiological systems, genetic and psychological factors may modulate the experience of visceral pain. We also address some novel aetiological concepts in FGIDs, namely the gastrointestinal microbiota, connective tissue abnormalities and the gastrointestinal neuromuscular disorders. Firstly, the gastrointestinal microbiota is a diverse and dynamic ecosystem, that safeguards the host from external pathogens, aids in the metabolism of polysaccharides and lipids, modulates intestinal motility, in addition to modulating visceral perception. Secondly, connective tissue disorders, which traditionally have been considered to be confined largely to the musculoskeletal system, have an increasing evidence base demonstrating the presence of visceral manifestations. Since the sensorimotor apparatus of the GI tract is embedded within connective tissue it should not be surprising that such disorder may result in visceral pain and abnormal gut motility. Thirdly, gastrointestinal neuromuscular diseases refer to a heterogeneous group of disorders in which symptoms arise from impaired GI motor activity often manifesting as abnormal transit with or without radiological evidence of transient or persistent dilation of the viscera. Although a number of these are readily recognizable, such as achalasia or Hirschsprung’s disease, the cause in a number of patients is not. An international working group has recently addressed this “gap”, providing a comprehensive morphologically based diagnostic criteria.Conclusions/implicationsAlthough marked advances have been made in understanding the mechanisms that contribute to the development and maintenance of visceral pain, many interventions have failed to produce tangible improvement in patient outcomes. In the last part of this review we highlight an emerging approach that has allowed the definition and delineation of temporally stable visceral pain clusters, which may improve participant homogeneity in future studies, potentially facilitate stratification of treatment in FGID and lead to improvements in diagnostic criteria and outcomes.

Journal

Scandinavian Journal of Painde Gruyter

Published: Apr 1, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off