Mechanisms of action of intravenous immunoglobulin in septic encephalopathy

Mechanisms of action of intravenous immunoglobulin in septic encephalopathy AbstractAcute brain dysfunction associated with sepsis is a serious complication that results in morbidity and mortality. Intravenous immunoglobulin (IVIg) treatment is known to alleviate behavioral deficits in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Our results suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. IgGAM treatment might suppress classical complement pathway by reducing C5a activity and proapoptotic NF-κB and Bax expressions, thereby, inhibiting major inflammation and apoptosis cascades. Future animal model experiments performed with specific C5aR and NF-κB agonists/antagonists or C5aR-deficient mice might more robustly disclose the significance of these pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in brain injury pathogenesis in sepsis, might also be utilized as potential targets for future treatment trials of septic encephalopathy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in the Neurosciences de Gruyter

Mechanisms of action of intravenous immunoglobulin in septic encephalopathy

Loading next page...
 
/lp/degruyter/mechanisms-of-action-of-intravenous-immunoglobulin-in-septic-MgnEj0zKaU
Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1607-8470
eISSN
2191-0200
D.O.I.
10.1515/revneuro-2017-0065
Publisher site
See Article on Publisher Site

Abstract

AbstractAcute brain dysfunction associated with sepsis is a serious complication that results in morbidity and mortality. Intravenous immunoglobulin (IVIg) treatment is known to alleviate behavioral deficits in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Our results suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. IgGAM treatment might suppress classical complement pathway by reducing C5a activity and proapoptotic NF-κB and Bax expressions, thereby, inhibiting major inflammation and apoptosis cascades. Future animal model experiments performed with specific C5aR and NF-κB agonists/antagonists or C5aR-deficient mice might more robustly disclose the significance of these pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in brain injury pathogenesis in sepsis, might also be utilized as potential targets for future treatment trials of septic encephalopathy.

Journal

Reviews in the Neurosciencesde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off