LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p

LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization... AbstractThis study aimed to investigate the mechanism of lncRNA-KCNQ1OT1 on macrophage polarization to ameliorate particle-induced osteolysis. We used polymethylmethacrylate (PMMA) to induce primary bone marrow-derived macrophages (BMMs) obtained from mice and the RAW264.7 cell line, and found that the tumor necrosis factor-alpha (TNF-α) concentration and inducible nitric oxide synthase (iNOS) expression was increased, while interleukin (IL)-10 concentration and Arg1 expression were decreased in PMMA-induced cells. KCNQ1OT1 and IL-10 expression were both suppressed and miR-21a-5p expression was promoted in PMMA-induced cells. Overexpression of KCNQ1OT1 reversed the effect of PMMA on RAW264.7 cells, such as the reduced TNF-α concentration and iNOS expression, and increased IL-10 concentration and Arg1 expression in PMMA-induced cell transfected with pcDNA-KCNQ1OT1. The luciferase assay confirmed that IL-10 is a target of miR-21a-5p. RNA immunoprecipitation (RIP) and RNA pull-down experiments demonstrated that KCNQ1OT1 functions as a miR-21a-5p decoy. Thus, lncRNA KCNQ1OT1 induces M2 macrophage polarization to ameliorate particle-induced osteolysis by inhibiting miR-21a-5p. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Chemistry de Gruyter

LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p

Loading next page...
 
/lp/degruyter/lncrna-kcnq1ot1-ameliorates-particle-induced-osteolysis-through-kqefHKl883
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4315
eISSN
1437-4315
D.O.I.
10.1515/hsz-2017-0215
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study aimed to investigate the mechanism of lncRNA-KCNQ1OT1 on macrophage polarization to ameliorate particle-induced osteolysis. We used polymethylmethacrylate (PMMA) to induce primary bone marrow-derived macrophages (BMMs) obtained from mice and the RAW264.7 cell line, and found that the tumor necrosis factor-alpha (TNF-α) concentration and inducible nitric oxide synthase (iNOS) expression was increased, while interleukin (IL)-10 concentration and Arg1 expression were decreased in PMMA-induced cells. KCNQ1OT1 and IL-10 expression were both suppressed and miR-21a-5p expression was promoted in PMMA-induced cells. Overexpression of KCNQ1OT1 reversed the effect of PMMA on RAW264.7 cells, such as the reduced TNF-α concentration and iNOS expression, and increased IL-10 concentration and Arg1 expression in PMMA-induced cell transfected with pcDNA-KCNQ1OT1. The luciferase assay confirmed that IL-10 is a target of miR-21a-5p. RNA immunoprecipitation (RIP) and RNA pull-down experiments demonstrated that KCNQ1OT1 functions as a miR-21a-5p decoy. Thus, lncRNA KCNQ1OT1 induces M2 macrophage polarization to ameliorate particle-induced osteolysis by inhibiting miR-21a-5p.

Journal

Biological Chemistryde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial