Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas

Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas AbstractPrevious research has focused on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, existing dynamic models are not easily applied to high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) for passive portfolios and dynamic optimal portfolios using Mean-Variance and ES criteria for a sample of US stocks over a period of 10 years. Our results suggest that (1) Modeling the marginal distribution is important for dynamic high-dimensional multivariate models. (2) Neglecting the dynamic dependence in the copula causes over-aggressive risk management. (3) The DCC/DECO Gaussian copula and t-copula work very well for both VaR and ES. (4) Grouped t-copulas and t-copulas with dynamic degrees of freedom further match the fat tail. (5) Correctly modeling the dependence structure makes an improvement in portfolio optimization with respect to tail risk. (6) Models driven by multivariate t innovations with exogenously given degrees of freedom provide a flexible and applicable alternative for optimal portfolio risk management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Dependence Modeling de Gruyter

Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas

Loading next page...
 
/lp/degruyter/large-portfolio-risk-management-and-optimal-portfolio-allocation-with-2mImFnp11K
Publisher
De Gruyter
Copyright
© 2018, published by De Gruyter
ISSN
2300-2298
eISSN
2300-2298
D.O.I.
10.1515/demo-2018-0002
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious research has focused on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, existing dynamic models are not easily applied to high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) for passive portfolios and dynamic optimal portfolios using Mean-Variance and ES criteria for a sample of US stocks over a period of 10 years. Our results suggest that (1) Modeling the marginal distribution is important for dynamic high-dimensional multivariate models. (2) Neglecting the dynamic dependence in the copula causes over-aggressive risk management. (3) The DCC/DECO Gaussian copula and t-copula work very well for both VaR and ES. (4) Grouped t-copulas and t-copulas with dynamic degrees of freedom further match the fat tail. (5) Correctly modeling the dependence structure makes an improvement in portfolio optimization with respect to tail risk. (6) Models driven by multivariate t innovations with exogenously given degrees of freedom provide a flexible and applicable alternative for optimal portfolio risk management.

Journal

Dependence Modelingde Gruyter

Published: Feb 7, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off