Investigation of low consistency reject refining of mechanical pulp for energy savings

Investigation of low consistency reject refining of mechanical pulp for energy savings AbstractIn this study, the effects of low consistency refining (LCR) energy and intensity on mechanical pulp properties have been studied for three different types of reject pulps (softwood TMP, softwood CTMP and hardwood CTMP), which were refined at varying intensity. Resulting pulp properties have been compared with high consistency refining (HCR) of the same reject pulps. For all furnish types, it was shown that LCR can develop pulp properties matching those developed through HCR with significantly less energy. The resulting pulp properties were found to be affected not only by refining intensity and energy, but also by initial fibre morphology. Pilot LCR trials demonstrated that high freeness reject pulp is initially insensitive to refining intensity as specific energy is applied. This enables the first stage of LCR to be carried out at a higher specific energy and intensity, which can reduce the number of stages of LCR required to reach a target quality. This work shows that low intensity LCR is capable of achieving the same tensile index as HCR pulp at a target freeness of 200 ml CSF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nordic Pulp & Paper Research Journal de Gruyter

Investigation of low consistency reject refining of mechanical pulp for energy savings

Loading next page...
 
/lp/degruyter/investigation-of-low-consistency-reject-refining-of-mechanical-pulp-NV7oDen5C7
Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0283-2631
eISSN
2000-0669
D.O.I.
10.1515/npprj-2018-3006
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this study, the effects of low consistency refining (LCR) energy and intensity on mechanical pulp properties have been studied for three different types of reject pulps (softwood TMP, softwood CTMP and hardwood CTMP), which were refined at varying intensity. Resulting pulp properties have been compared with high consistency refining (HCR) of the same reject pulps. For all furnish types, it was shown that LCR can develop pulp properties matching those developed through HCR with significantly less energy. The resulting pulp properties were found to be affected not only by refining intensity and energy, but also by initial fibre morphology. Pilot LCR trials demonstrated that high freeness reject pulp is initially insensitive to refining intensity as specific energy is applied. This enables the first stage of LCR to be carried out at a higher specific energy and intensity, which can reduce the number of stages of LCR required to reach a target quality. This work shows that low intensity LCR is capable of achieving the same tensile index as HCR pulp at a target freeness of 200 ml CSF.

Journal

Nordic Pulp & Paper Research Journalde Gruyter

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off