Insight on gem opal formation in volcanic ash deposits from a supereruption: A case study through oxygen and hydrogen isotopic composition of opals from Lake Tecopa, California, U.S.A

Insight on gem opal formation in volcanic ash deposits from a supereruption: A case study through... AbstractAt Lake Tecopa, in California, white play-of-color opals are found in vesicles of a volcanic ash layer from the Huckleberry Ridge Tuff super-eruption (2.1 Ma). They show characteristic traits of opal-AG by X-ray diffraction and scanning electron microscopy (silica spheres of ~330 nm). These properties are not typical for volcanic opals, and are usually associated with opals formed in a sedimentary environment, such as opal-AG from Australia. The conditions under which opal was formed at Lake Tecopa were determined by oxygen and hydrogen isotopic analyses and give a better understanding of the formation of opal in general.Tecopa opal’s δ18O is ~30‰, which leads to a formation temperature between 5 and 10 °C from water composition similar to the present spring water composition (δ18O = –12‰), or between 15 and 30 °C (the present day spring water temperatures) in water having a δ18O between –9.5 and –5.5‰. As a result, opal experienced 25–50% evaporation at the Tecopa basin. Contrary to long-held views, the formation of opal-AG vs. opal-CT (or opal-C) is not determined by the type of deposits, i.e., respectively sedimentary vs. volcanic, but mostly by the temperature of formation, low (≤45 °C for opal-AG) vs. high (≥160 °C for opal-CT) as suggested in most recent papers.The isotopic composition of water contained in Tecopa opals is assessed and results show that water in opal records different stages of opal formation from groundwater. Opal seems to precipitate from groundwater that is undertaking isotopic distillation during its circulation, most likely due to 15% up to 80–95% evaporation. Hydrogen isotopes are poorly documented in opal and require more systematic work, but this study reveals that, in Tecopa opals, molecular water (H2Om) is isotopically heavier than structural water (OH), a phenomena already well known in amorphous volcanic glass. Overall, opal isotopic composition reflects the composition of the water from which it precipitated and for that reason could be (as established for amorphous silicic glass) a useful tool for paleoenvironments, and paleoclimatic reconstitutions on Earth and on other terrestrial planets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Insight on gem opal formation in volcanic ash deposits from a supereruption: A case study through oxygen and hydrogen isotopic composition of opals from Lake Tecopa, California, U.S.A

Loading next page...
 
/lp/degruyter/insight-on-gem-opal-formation-in-volcanic-ash-deposits-from-a-JbnhkxKZYk
Publisher
Mineralogical Society of America
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0003-004X
eISSN
1945-3027
D.O.I.
10.2138/am-2018-6131
Publisher site
See Article on Publisher Site

Abstract

AbstractAt Lake Tecopa, in California, white play-of-color opals are found in vesicles of a volcanic ash layer from the Huckleberry Ridge Tuff super-eruption (2.1 Ma). They show characteristic traits of opal-AG by X-ray diffraction and scanning electron microscopy (silica spheres of ~330 nm). These properties are not typical for volcanic opals, and are usually associated with opals formed in a sedimentary environment, such as opal-AG from Australia. The conditions under which opal was formed at Lake Tecopa were determined by oxygen and hydrogen isotopic analyses and give a better understanding of the formation of opal in general.Tecopa opal’s δ18O is ~30‰, which leads to a formation temperature between 5 and 10 °C from water composition similar to the present spring water composition (δ18O = –12‰), or between 15 and 30 °C (the present day spring water temperatures) in water having a δ18O between –9.5 and –5.5‰. As a result, opal experienced 25–50% evaporation at the Tecopa basin. Contrary to long-held views, the formation of opal-AG vs. opal-CT (or opal-C) is not determined by the type of deposits, i.e., respectively sedimentary vs. volcanic, but mostly by the temperature of formation, low (≤45 °C for opal-AG) vs. high (≥160 °C for opal-CT) as suggested in most recent papers.The isotopic composition of water contained in Tecopa opals is assessed and results show that water in opal records different stages of opal formation from groundwater. Opal seems to precipitate from groundwater that is undertaking isotopic distillation during its circulation, most likely due to 15% up to 80–95% evaporation. Hydrogen isotopes are poorly documented in opal and require more systematic work, but this study reveals that, in Tecopa opals, molecular water (H2Om) is isotopically heavier than structural water (OH), a phenomena already well known in amorphous volcanic glass. Overall, opal isotopic composition reflects the composition of the water from which it precipitated and for that reason could be (as established for amorphous silicic glass) a useful tool for paleoenvironments, and paleoclimatic reconstitutions on Earth and on other terrestrial planets.

Journal

American Mineralogistde Gruyter

Published: May 25, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off