Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Infrared analysis of lipoproteins in the detection of alcohol biomarkers

Infrared analysis of lipoproteins in the detection of alcohol biomarkers AbstractBackground:Alcoholism is a major public health problem. Alcohol causes modifications in the composition and concentration of lipoproteins and influences the enzymes and transfer proteins that transform lipoproteins in plasma. Alcohol is associated with the presence of alcohol biomarkers (fatty acid ethyl esters [FAEEs] and phosphatidylethanol [PEth]) in lipoproteins. We explore the possibilities of detecting alcohol biomarkers in non-high-density-lipoproteins (non-HDLs) precipitated from serum using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).Methods:Analyzes were carried out on stored serum samples, with known % carbohydrate-deficient transferrin (CDT) values, included in a driver’s license regranting program under the control of the Belgian Institute of Road Safety. The study consisted of 127 control samples (CDT≤1.3%) and 114 alcoholic samples (CDT>1.3%). Liver enzymes, CRP, triglycerides, total, HDL- and LDL-cholesterol values were determined. Non-HDLs were precipitated with sodium phosphotungstate and MgCl2 and analyzed using ATR-FTIR in the range from 4500 cm−1 to 450 cm−1 using a Perkin Elmer ATR-FTIR Spectrometer Two.Results:The area under the curve of the 1130–990 cm−1 region (AUC1130−990 cm−1) was able to discriminate controls from alcoholics (p<0.0001) due to the presence of FAEEs in lipoproteins. Multiple regression analysis significantly predicted the AUC1130−990 cm−1 (adj. r2=0.13, p<0.0001). Significant correlations were found between AUC1130−990 cm−1 and CDT values (r=0.32, p<0.0001), AST/ALT ratio (r=0.21, p=0.001). GGT showed no significant correlation.Conclusions:Infrared analysis of lipoproteins is a potential tool in the detection of alcohol biomarkers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Infrared analysis of lipoproteins in the detection of alcohol biomarkers

Loading next page...
 
/lp/degruyter/infrared-analysis-of-lipoproteins-in-the-detection-of-alcohol-UOxHHkAfA7
Publisher
de Gruyter
Copyright
©2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
DOI
10.1515/cclm-2016-0668
pmid
27855115
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Alcoholism is a major public health problem. Alcohol causes modifications in the composition and concentration of lipoproteins and influences the enzymes and transfer proteins that transform lipoproteins in plasma. Alcohol is associated with the presence of alcohol biomarkers (fatty acid ethyl esters [FAEEs] and phosphatidylethanol [PEth]) in lipoproteins. We explore the possibilities of detecting alcohol biomarkers in non-high-density-lipoproteins (non-HDLs) precipitated from serum using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).Methods:Analyzes were carried out on stored serum samples, with known % carbohydrate-deficient transferrin (CDT) values, included in a driver’s license regranting program under the control of the Belgian Institute of Road Safety. The study consisted of 127 control samples (CDT≤1.3%) and 114 alcoholic samples (CDT>1.3%). Liver enzymes, CRP, triglycerides, total, HDL- and LDL-cholesterol values were determined. Non-HDLs were precipitated with sodium phosphotungstate and MgCl2 and analyzed using ATR-FTIR in the range from 4500 cm−1 to 450 cm−1 using a Perkin Elmer ATR-FTIR Spectrometer Two.Results:The area under the curve of the 1130–990 cm−1 region (AUC1130−990 cm−1) was able to discriminate controls from alcoholics (p<0.0001) due to the presence of FAEEs in lipoproteins. Multiple regression analysis significantly predicted the AUC1130−990 cm−1 (adj. r2=0.13, p<0.0001). Significant correlations were found between AUC1130−990 cm−1 and CDT values (r=0.32, p<0.0001), AST/ALT ratio (r=0.21, p=0.001). GGT showed no significant correlation.Conclusions:Infrared analysis of lipoproteins is a potential tool in the detection of alcohol biomarkers.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Jun 1, 2017

References