Individualized identification of disturbed pathways in sickle cell disease

Individualized identification of disturbed pathways in sickle cell disease AbstractBackgroundSickle cell disease (SCD) is one of the most common genetic blood disorders. Identifying pathway aberrance in an individual SCD contributes to the understanding of disease pathogenesis and the promotion of personalized therapy. Here we proposed an individualized pathway aberrance method to identify the disturbed pathways in SCD.MethodsBased on the transcriptome data and pathway data, an individualized pathway aberrance method was implemented to identify the altered pathways in SCD, which contained four steps: data preprocessing, gene-level statistics, pathway-level statistics, and significant analysis. The changed percentage of altered pathways in SCD individuals was calculated, and a differentially expressed gene (DEG)-based pathway enrichment analysis was performed to validate the results.ResultsWe identified 618 disturbed pathways between normal and SCD conditions. Among them, 6 pathways were altered in > 80% SCD individuals. Meanwhile, forty-six DEGs were identified between normal and SCD conditions, and were enriched in heme biosynthesis. Relative to DEG-based pathway analysis, the new method presented richer results and more extensive application.ConclusionThis study predicted several disturbed pathways via detecting pathway aberrance on a personalized basis. The results might provide new sights into the pathogenesis of SCD and facilitate the application of custom treatment for SCD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Life Sciences de Gruyter

Individualized identification of disturbed pathways in sickle cell disease

Loading next page...
 
/lp/degruyter/individualized-identification-of-disturbed-pathways-in-sickle-cell-d0JhYgmlhO
Publisher
De Gruyter Open
Copyright
© 2017 Chun-Juan Lu et al.
ISSN
2391-5412
eISSN
2391-5412
D.O.I.
10.1515/biol-2017-0049
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundSickle cell disease (SCD) is one of the most common genetic blood disorders. Identifying pathway aberrance in an individual SCD contributes to the understanding of disease pathogenesis and the promotion of personalized therapy. Here we proposed an individualized pathway aberrance method to identify the disturbed pathways in SCD.MethodsBased on the transcriptome data and pathway data, an individualized pathway aberrance method was implemented to identify the altered pathways in SCD, which contained four steps: data preprocessing, gene-level statistics, pathway-level statistics, and significant analysis. The changed percentage of altered pathways in SCD individuals was calculated, and a differentially expressed gene (DEG)-based pathway enrichment analysis was performed to validate the results.ResultsWe identified 618 disturbed pathways between normal and SCD conditions. Among them, 6 pathways were altered in > 80% SCD individuals. Meanwhile, forty-six DEGs were identified between normal and SCD conditions, and were enriched in heme biosynthesis. Relative to DEG-based pathway analysis, the new method presented richer results and more extensive application.ConclusionThis study predicted several disturbed pathways via detecting pathway aberrance on a personalized basis. The results might provide new sights into the pathogenesis of SCD and facilitate the application of custom treatment for SCD.

Journal

Open Life Sciencesde Gruyter

Published: Dec 29, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off