Indications of the onset of fiber cutting in low consistency refining using a refiner force sensor: The effect of pulp furnish

Indications of the onset of fiber cutting in low consistency refining using a refiner force... AbstractDetection of the onset of fiber cutting is beneficial in low consistency refining as it may prevent reduction of average fiber length, optimize fiber quality improvements by operating at gaps just wider than the critical gap, avoid decreasing the strength properties of paper, and increase energy efficiency. The objective of this study is to understand the effect of pulp furnish on measured bar forces and, more specifically, on the detection of fiber cutting. Bar forces, i. e. forces applied to pulp fibers by the refiner bars, are measured with a custom-designed piezoelectric force sensor. Trials were conducted with an AIKAWA 16-in. single-disc refiner using hemlock/balsam softwood thermomechanical pulp, SPF softwood thermomechanical pulp, northern bleached softwood kraft pulp, and aspen hardwood thermomechanical pulp at 3.0 to 3.5 % consistency at rotational speeds of 1200 and 1400 rpm. The power of the time domain signal of the measured forces is introduced as an indicator of the onset of fiber cutting. Our results show that this new fiber cutting metric is a sensitive and reliable metric for determination of fibre cutting for a range of pulp furnishes. The study suggests that the refiner force sensor has potential to be exploited for in-process detection of fiber cutting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nordic Pulp & Paper Research Journal de Gruyter

Indications of the onset of fiber cutting in low consistency refining using a refiner force sensor: The effect of pulp furnish

Loading next page...
 
/lp/degruyter/indications-of-the-onset-of-fiber-cutting-in-low-consistency-refining-GZjOKJtRt2
Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0283-2631
eISSN
2000-0669
D.O.I.
10.1515/npprj-2018-3013
Publisher site
See Article on Publisher Site

Abstract

AbstractDetection of the onset of fiber cutting is beneficial in low consistency refining as it may prevent reduction of average fiber length, optimize fiber quality improvements by operating at gaps just wider than the critical gap, avoid decreasing the strength properties of paper, and increase energy efficiency. The objective of this study is to understand the effect of pulp furnish on measured bar forces and, more specifically, on the detection of fiber cutting. Bar forces, i. e. forces applied to pulp fibers by the refiner bars, are measured with a custom-designed piezoelectric force sensor. Trials were conducted with an AIKAWA 16-in. single-disc refiner using hemlock/balsam softwood thermomechanical pulp, SPF softwood thermomechanical pulp, northern bleached softwood kraft pulp, and aspen hardwood thermomechanical pulp at 3.0 to 3.5 % consistency at rotational speeds of 1200 and 1400 rpm. The power of the time domain signal of the measured forces is introduced as an indicator of the onset of fiber cutting. Our results show that this new fiber cutting metric is a sensitive and reliable metric for determination of fibre cutting for a range of pulp furnishes. The study suggests that the refiner force sensor has potential to be exploited for in-process detection of fiber cutting.

Journal

Nordic Pulp & Paper Research Journalde Gruyter

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off