Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing

Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing AbstractWe introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanophotonics de Gruyter

Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing

Loading next page...
 
/lp/degruyter/hybrid-ni-sio2-au-dimer-arrays-for-high-resolution-refractive-index-B8Ozn0uIyv
Publisher
De Gruyter
Copyright
© 2018 Sebastiaan van Dijken et al., published by De Gruyter, Berlin/Boston
ISSN
2192-8614
eISSN
2192-8614
D.O.I.
10.1515/nanoph-2018-0013
Publisher site
See Article on Publisher Site

Abstract

AbstractWe introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger.

Journal

Nanophotonicsde Gruyter

Published: May 24, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off