Group actions, non-Kähler complex manifolds and SKT structures

Group actions, non-Kähler complex manifolds and SKT structures AbstractWe give a construction of integrable complex structures on the total space of a smooth principal bundle over a complex manifold, with an even dimensional compact Lie group as structure group, under certain conditions. This generalizes the constructions of complex structure on compact Lie groups by Samelson and Wang, and on principal torus bundles by Calabi-Eckmann and others. It also yields large classes of new examples of non-Kähler compact complex manifolds. Moreover, under suitable restrictions on the base manifold, the structure group, and characteristic classes, the total space of the principal bundle admits SKT metrics. This generalizes recent results of Grantcharov et al. We study the Picard group and the algebraic dimension of the total space in some cases. We also use a slightly generalized version of the construction to obtain (non-Kähler) complex structures on tangential frame bundles of complex orbifolds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Complex Manifolds de Gruyter

Group actions, non-Kähler complex manifolds and SKT structures

Loading next page...
 
/lp/degruyter/group-actions-non-k-hler-complex-manifolds-and-skt-structures-fXYfDT8XVt
Publisher
De Gruyter Open
Copyright
© 2018
ISSN
2300-7443
eISSN
2300-7443
D.O.I.
10.1515/coma-2018-0002
Publisher site
See Article on Publisher Site

Abstract

AbstractWe give a construction of integrable complex structures on the total space of a smooth principal bundle over a complex manifold, with an even dimensional compact Lie group as structure group, under certain conditions. This generalizes the constructions of complex structure on compact Lie groups by Samelson and Wang, and on principal torus bundles by Calabi-Eckmann and others. It also yields large classes of new examples of non-Kähler compact complex manifolds. Moreover, under suitable restrictions on the base manifold, the structure group, and characteristic classes, the total space of the principal bundle admits SKT metrics. This generalizes recent results of Grantcharov et al. We study the Picard group and the algebraic dimension of the total space in some cases. We also use a slightly generalized version of the construction to obtain (non-Kähler) complex structures on tangential frame bundles of complex orbifolds.

Journal

Complex Manifoldsde Gruyter

Published: Feb 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial