Genotype X Environment Interaction for Yield of Pickling Cucumber in 24 U.S. Environments

Genotype X Environment Interaction for Yield of Pickling Cucumber in 24 U.S. Environments AbstractReliable yield performance is important in cucumber because seed companies prefer to market cultivars adapted to multiple rather than single regions of the U.S. Also, growers benefit by using a cultivar that performs well in many environments. Future performance of cultivars is also important. The objectives of the study were to (i) evaluate the yield of cucumber genotypes over successive years and in different locations, and (ii) identify cucumber genotypes with high stability for yield. A diverse set of 22 pickling genotypes was evaluated over 3 years (1986, 1987 and 1988) and in 7 locations across the United States. Yield traits were evaluated using once-over harvest and counting the number of fruit that were marketable, culled or oversize. Total yield, marketable yield (total minus culled fruit), early yield (number of oversize fruit), percent culls and fruit per plant were calculated. Data were analyzed with SASGxE and RGxE programs using SAS and R programming languages, respectively. There were strong effects of environment(E) as well as genotype(G) xE interaction for all traits. Genotypes ‘Regal F1’, ‘Calypso F1’, ‘Carolina F1’, ‘Gy 3’, ‘Gy 14’ and ‘Fremont F1’ had high marketable yield and medium to high stability for all traits. There was an advantage of hybrids over inbreds for trait performance. Hybrids fell into a single cluster with large prediction intervals. Based on the stability statistics and divisive clusters, it appears possible to breed stable cucumber genotypes with high yield. The genotype with highest performance for marketable yield, greatest stability for yield, lowest 1-R2 ratio value (diverse and representative) were ‘Marbel F1’ and Gy 14. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Agriculture de Gruyter

Genotype X Environment Interaction for Yield of Pickling Cucumber in 24 U.S. Environments

Loading next page...
 
/lp/degruyter/genotype-x-environment-interaction-for-yield-of-pickling-cucumber-in-cNdn3JbUYx
Publisher
de Gruyter
Copyright
© 2018 Mahendra Dia, et al., published by De Gruyter
ISSN
1874-3315
eISSN
2391-9531
D.O.I.
10.1515/opag-2018-0001
Publisher site
See Article on Publisher Site

Abstract

AbstractReliable yield performance is important in cucumber because seed companies prefer to market cultivars adapted to multiple rather than single regions of the U.S. Also, growers benefit by using a cultivar that performs well in many environments. Future performance of cultivars is also important. The objectives of the study were to (i) evaluate the yield of cucumber genotypes over successive years and in different locations, and (ii) identify cucumber genotypes with high stability for yield. A diverse set of 22 pickling genotypes was evaluated over 3 years (1986, 1987 and 1988) and in 7 locations across the United States. Yield traits were evaluated using once-over harvest and counting the number of fruit that were marketable, culled or oversize. Total yield, marketable yield (total minus culled fruit), early yield (number of oversize fruit), percent culls and fruit per plant were calculated. Data were analyzed with SASGxE and RGxE programs using SAS and R programming languages, respectively. There were strong effects of environment(E) as well as genotype(G) xE interaction for all traits. Genotypes ‘Regal F1’, ‘Calypso F1’, ‘Carolina F1’, ‘Gy 3’, ‘Gy 14’ and ‘Fremont F1’ had high marketable yield and medium to high stability for all traits. There was an advantage of hybrids over inbreds for trait performance. Hybrids fell into a single cluster with large prediction intervals. Based on the stability statistics and divisive clusters, it appears possible to breed stable cucumber genotypes with high yield. The genotype with highest performance for marketable yield, greatest stability for yield, lowest 1-R2 ratio value (diverse and representative) were ‘Marbel F1’ and Gy 14.

Journal

Open Agriculturede Gruyter

Published: Feb 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off