Generating pairing-friendly elliptic curve parameters using sparse families

Generating pairing-friendly elliptic curve parameters using sparse families AbstractThe majority of methods for constructing pairing-friendly elliptic curves are based on representing the curve parameters as polynomial families. There are three such types, namely complete, complete with variable discriminant and sparse families. In this paper, we present a method for constructing sparse families and produce examples of this type that have not previously appeared in the literature, for various embedding degrees. We provide numerical examples obtained by these sparse families, considering for the first time the effect of the recent progress on the tower number field sieve (TNFS) method for solving the discrete logarithm problem (DLP) in finite field extensions of composite degree. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mathematical Cryptology de Gruyter

Generating pairing-friendly elliptic curve parameters using sparse families

Loading next page...
 
/lp/degruyter/generating-pairing-friendly-elliptic-curve-parameters-using-sparse-HxKR3og8nw
Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1862-2984
eISSN
1862-2984
D.O.I.
10.1515/jmc-2017-0024
Publisher site
See Article on Publisher Site

Abstract

AbstractThe majority of methods for constructing pairing-friendly elliptic curves are based on representing the curve parameters as polynomial families. There are three such types, namely complete, complete with variable discriminant and sparse families. In this paper, we present a method for constructing sparse families and produce examples of this type that have not previously appeared in the literature, for various embedding degrees. We provide numerical examples obtained by these sparse families, considering for the first time the effect of the recent progress on the tower number field sieve (TNFS) method for solving the discrete logarithm problem (DLP) in finite field extensions of composite degree.

Journal

Journal of Mathematical Cryptologyde Gruyter

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off