GCH1 variants, tetrahydrobiopterin and their effects on pain sensitivity

GCH1 variants, tetrahydrobiopterin and their effects on pain sensitivity AbstractBackgroundA great proportion of the variation in pain experience and chronicity is caused by heritable factors. Within the last decades several candidate genes have been discovered either increasing or decreasing pain sensitivity or the risk of chronic pain in humans. One of the most studied genes is the GCH1 gene coding for the enzyme GTP cyclohydrolase 1 (GCH1). GCH1 catalyses the initial and rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4). The main function of BH4 is regulation of monoamine and nitric oxide biosynthesis, all involved in nociceptive signalling.MethodsIn this topical review we focus on the implication of the GCH1 gene and BH4 in painful conditions. We discuss experimental evidence from our group in relation to relevant research publications evaluating the BH4 pathway in pain. Studies assessing the role of GCH1 and BH4 in pain consist of human and animal studies, including DOPA-responsive dystonia (DRD) patients and hph-1 mice (a genetic mouse model of DRD) having mutations in the GCH1 gene as well as preclinical studies with the GCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP). The hypothesis is that genetic and pharmacological reduction of GCH1 would result in lower pain sensitivity.ResultsPrevious studies have demonstrated that a particular “pain protective” GCH1 haplotype, found in 15% of the general human population, is linked to decreased pain sensitivity. We further support these findings in DRD patients, showing normal thresholds to mechanical and thermal stimuli, whereas a trend towards lower pain sensitivity is seen following chemical pain sensitisation. Consistent with these observations, non-injured hph-1 mice displayed normal mechano- and thermosensation compared to wild-type mice. After peripheral inflammation with Complete Freund’ Adjuvant or sensitisation with capsaicin the mutant mice exhibited lower sensitivity to mechanical and heat stimuli. Moreover, hph-1 mice showed decreased nociception in the first phase of the formalin test.Several studies report analgesic effects of GCH1 inhibition with 90–270 mg/kg DAHP in rat models of inflammatory and neuropathic pain. However, we could not completely replicate these findings in mice. Fairly higher doses of DAHP (≥270 mg/kg) were needed to reduce inflammatory pain in mice, but the window between antinociception and toxic effects was small, since 400 mg/kg DAHP affected motor performance and general appearance. Also, the analgesic effects were marginal in mice compared to that observed in rats.ConclusionsVariations in the GCH1 gene in both humans and mice appear to regulate pain sensitivity and pain behaviours, particularly after pain sensitisation, whereas pain sensitivity to phasic mechanical and thermal stimuli is normal. Moreover, pharmacological inhibition of GCH1 shows antinociceptive effects in preclinical pain studies, though our studies imply that GCH1 inhibition may have a small therapeutic index.ImplicationsThe implication of the GCH1 gene in pain may increase our understanding of the risk factors of chronic pain development and improve current pain therapy by personalised medicine. In addition, inhibition of GCH1 provides a potential target for analgesic drug development, though GCH1 inhibitors should possess local or partial effects to avoid serious side-effects to the central nervous system and cardiovascular system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

GCH1 variants, tetrahydrobiopterin and their effects on pain sensitivity

Loading next page...
 
/lp/degruyter/gch1-variants-tetrahydrobiopterin-and-their-effects-on-pain-nfcyQxoYkG
Publisher
de Gruyter
Copyright
© 2014 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2013.12.001
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundA great proportion of the variation in pain experience and chronicity is caused by heritable factors. Within the last decades several candidate genes have been discovered either increasing or decreasing pain sensitivity or the risk of chronic pain in humans. One of the most studied genes is the GCH1 gene coding for the enzyme GTP cyclohydrolase 1 (GCH1). GCH1 catalyses the initial and rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4). The main function of BH4 is regulation of monoamine and nitric oxide biosynthesis, all involved in nociceptive signalling.MethodsIn this topical review we focus on the implication of the GCH1 gene and BH4 in painful conditions. We discuss experimental evidence from our group in relation to relevant research publications evaluating the BH4 pathway in pain. Studies assessing the role of GCH1 and BH4 in pain consist of human and animal studies, including DOPA-responsive dystonia (DRD) patients and hph-1 mice (a genetic mouse model of DRD) having mutations in the GCH1 gene as well as preclinical studies with the GCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP). The hypothesis is that genetic and pharmacological reduction of GCH1 would result in lower pain sensitivity.ResultsPrevious studies have demonstrated that a particular “pain protective” GCH1 haplotype, found in 15% of the general human population, is linked to decreased pain sensitivity. We further support these findings in DRD patients, showing normal thresholds to mechanical and thermal stimuli, whereas a trend towards lower pain sensitivity is seen following chemical pain sensitisation. Consistent with these observations, non-injured hph-1 mice displayed normal mechano- and thermosensation compared to wild-type mice. After peripheral inflammation with Complete Freund’ Adjuvant or sensitisation with capsaicin the mutant mice exhibited lower sensitivity to mechanical and heat stimuli. Moreover, hph-1 mice showed decreased nociception in the first phase of the formalin test.Several studies report analgesic effects of GCH1 inhibition with 90–270 mg/kg DAHP in rat models of inflammatory and neuropathic pain. However, we could not completely replicate these findings in mice. Fairly higher doses of DAHP (≥270 mg/kg) were needed to reduce inflammatory pain in mice, but the window between antinociception and toxic effects was small, since 400 mg/kg DAHP affected motor performance and general appearance. Also, the analgesic effects were marginal in mice compared to that observed in rats.ConclusionsVariations in the GCH1 gene in both humans and mice appear to regulate pain sensitivity and pain behaviours, particularly after pain sensitisation, whereas pain sensitivity to phasic mechanical and thermal stimuli is normal. Moreover, pharmacological inhibition of GCH1 shows antinociceptive effects in preclinical pain studies, though our studies imply that GCH1 inhibition may have a small therapeutic index.ImplicationsThe implication of the GCH1 gene in pain may increase our understanding of the risk factors of chronic pain development and improve current pain therapy by personalised medicine. In addition, inhibition of GCH1 provides a potential target for analgesic drug development, though GCH1 inhibitors should possess local or partial effects to avoid serious side-effects to the central nervous system and cardiovascular system.

Journal

Scandinavian Journal of Painde Gruyter

Published: Apr 1, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off