Evaluation of ribosomal P0 peptide as a vaccine candidate against Argulus siamensis in Labeo rohita

Evaluation of ribosomal P0 peptide as a vaccine candidate against Argulus siamensis in Labeo rohita AbstractArgulus spp. are important ectoparasites of fish, and the current approach of their control using chemical pesticides has numerous drawbacks. Vaccination is a promising alternative but identification of protective antigens is a limiting step. The ribosomal protein P0, essential for protein synthesis, has been studied as a vaccine candidate. We generated sequence information of the P0 protein of the ectoparasite Argulus siamensis and the host Labeo rohita. The region of the parasite P0 protein with less sequence similarity with that of the host P0 protein and high predicted antigenicity was used for peptide synthesis. The peptide was conjugated with keyhole limpet hemocyanin (KLH) for immunization of rohu at a dose of 1.5 μg/g body weight. Dot blot assays confirmed production of antibodies against pP0-KLH in immunized fish. We evaluated the efficiency of pP0-KLH as a vaccine antigen by challenge of the immunized fish with A. siamensis. Although there was no significant difference in parasite load between both groups, a reduced and delayed mortality of 59% (15 days post-infection) in immunized group was noticed as compared to 75% mortality (within 7–15 days post-infection) in control group. The partial protection observed indicated the need for further optimization of this molecule to develop it into a vaccine candidate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Life Sciences de Gruyter

Evaluation of ribosomal P0 peptide as a vaccine candidate against Argulus siamensis in Labeo rohita

Loading next page...
 
/lp/degruyter/evaluation-of-ribosomal-p0-peptide-as-a-vaccine-candidate-against-FP8P2EWcR9
Publisher
de Gruyter
Copyright
© 2017 Banya Kar et al.,
ISSN
2391-5412
eISSN
2391-5412
D.O.I.
10.1515/biol-2017-0011
Publisher site
See Article on Publisher Site

Abstract

AbstractArgulus spp. are important ectoparasites of fish, and the current approach of their control using chemical pesticides has numerous drawbacks. Vaccination is a promising alternative but identification of protective antigens is a limiting step. The ribosomal protein P0, essential for protein synthesis, has been studied as a vaccine candidate. We generated sequence information of the P0 protein of the ectoparasite Argulus siamensis and the host Labeo rohita. The region of the parasite P0 protein with less sequence similarity with that of the host P0 protein and high predicted antigenicity was used for peptide synthesis. The peptide was conjugated with keyhole limpet hemocyanin (KLH) for immunization of rohu at a dose of 1.5 μg/g body weight. Dot blot assays confirmed production of antibodies against pP0-KLH in immunized fish. We evaluated the efficiency of pP0-KLH as a vaccine antigen by challenge of the immunized fish with A. siamensis. Although there was no significant difference in parasite load between both groups, a reduced and delayed mortality of 59% (15 days post-infection) in immunized group was noticed as compared to 75% mortality (within 7–15 days post-infection) in control group. The partial protection observed indicated the need for further optimization of this molecule to develop it into a vaccine candidate.

Journal

Open Life Sciencesde Gruyter

Published: Apr 24, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off