Electromyographic classification of effort in muscle strength assessment

Electromyographic classification of effort in muscle strength assessment AbstractDual-channel evaluation of surface electromyogram (SEMG) signals acquired from amputee subjects using computational techniques for classification of arm motions is presented in this study. SEMG signals were classified by the neural network (NN) and interpretation was done using statistical techniques to extract the effectiveness of the recorded signals. From the results, it was observed that there exists a calculative difference in amplitude gain across different motions and that SEMG signals have great potential to classify arm motions. The outcomes indicated that the NN algorithm performs significantly better than other algorithms, with a classification rate (CR) of 96.40%. Analysis of variance (ANOVA) presents the results to validate the effectiveness of the recorded data to discriminate SEMG signals. The results are of significant thrust in identifying the operations that can be implemented for classifying upper-limb movements suitable for prostheses’ design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering / Biomedizinische Technik de Gruyter

Electromyographic classification of effort in muscle strength assessment

Loading next page...
 
/lp/degruyter/electromyographic-classification-of-effort-in-muscle-strength-LHRicll9Y0
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1862-278X
eISSN
1862-278X
D.O.I.
10.1515/bmt-2016-0038
Publisher site
See Article on Publisher Site

Abstract

AbstractDual-channel evaluation of surface electromyogram (SEMG) signals acquired from amputee subjects using computational techniques for classification of arm motions is presented in this study. SEMG signals were classified by the neural network (NN) and interpretation was done using statistical techniques to extract the effectiveness of the recorded signals. From the results, it was observed that there exists a calculative difference in amplitude gain across different motions and that SEMG signals have great potential to classify arm motions. The outcomes indicated that the NN algorithm performs significantly better than other algorithms, with a classification rate (CR) of 96.40%. Analysis of variance (ANOVA) presents the results to validate the effectiveness of the recorded data to discriminate SEMG signals. The results are of significant thrust in identifying the operations that can be implemented for classifying upper-limb movements suitable for prostheses’ design.

Journal

Biomedical Engineering / Biomedizinische Technikde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off