Electro-magneto-hydrodynamic lubrication

Electro-magneto-hydrodynamic lubrication AbstractThe topic of the presented paper aims to demonstrate a new principle of hydrodynamic lubrication in mechanical, thermal and electro-magnetic fields. Up till now, when dealing with the hydrodynamic theory lubrication, many authors of scientific papers have assumed the constant oil dynamic viscosity value without variations caused by temperature crosswise the film thickness. Simultaneously, due to the numerous AFM measurements, it appears that oil temperature gradients and oil viscosity changes in the bearing gap height directions cannot be omitted. Therefore, in this paper, the problem of the viscosity changes across the lubricant thin layer was resolved as the main novelty in principles of mechanical thermal lubrication. The method of solving the mentioned problem was manifested by a general model of semi-analytical solutions of isothermal electro-magneto-elastohydro-dynamic and non-Newtonian, lubrication problem formulated for two deformable rotational surfaces in curvilinear, co-ordinates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Physics de Gruyter

Electro-magneto-hydrodynamic lubrication

Loading next page...
 
/lp/degruyter/electro-magneto-hydrodynamic-lubrication-OVODxjxpz0
Publisher
De Gruyter
Copyright
© 2018 K. Wierzcholski and A. Miszczak, published by De Gruyter
ISSN
2391-5471
eISSN
2391-5471
D.O.I.
10.1515/phys-2018-0040
Publisher site
See Article on Publisher Site

Abstract

AbstractThe topic of the presented paper aims to demonstrate a new principle of hydrodynamic lubrication in mechanical, thermal and electro-magnetic fields. Up till now, when dealing with the hydrodynamic theory lubrication, many authors of scientific papers have assumed the constant oil dynamic viscosity value without variations caused by temperature crosswise the film thickness. Simultaneously, due to the numerous AFM measurements, it appears that oil temperature gradients and oil viscosity changes in the bearing gap height directions cannot be omitted. Therefore, in this paper, the problem of the viscosity changes across the lubricant thin layer was resolved as the main novelty in principles of mechanical thermal lubrication. The method of solving the mentioned problem was manifested by a general model of semi-analytical solutions of isothermal electro-magneto-elastohydro-dynamic and non-Newtonian, lubrication problem formulated for two deformable rotational surfaces in curvilinear, co-ordinates.

Journal

Open Physicsde Gruyter

Published: May 30, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off