Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate

Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate Abstract Methylene blue dye has been widely used in many industries and usually released in natural water sources, which become a health thereat to human-beings and microbes. This paper demonstrates an oxidation method to remove methylene blue in water. The effect of natural organic matter humic acid, on the degradation of methylene blue using PMS was investigated. The results show that PMS could effectively degrade 50 mg/L methylene blue (>95%) when the PMS concentration was larger than 1.0 mM. Humic acid had either negative or positive impact on the degradation processes because of the co-existence of several competitive degradation mechanisms (I: humic acid competes with methylene blue for PMS; II: humic acid activates PMS to produce sulfate radicals; III: Cl–1 competes with methylene blue for sulfate radicals). This study is expected to provide valuable information to improve in situ remediation of dye-contaminated wastewater in the existence of natural organic matters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Chemistry de Gruyter

Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate

Loading next page...
 
/lp/degruyter/effect-of-humic-acid-on-the-degradation-of-methylene-blue-by-n3qlYNc7pE
Publisher
De Gruyter
Copyright
© 2018 Ya Pang et al., published by De Gruyter
ISSN
2391-5420
eISSN
2391-5420
D.O.I.
10.1515/chem-2018-0044
Publisher site
See Article on Publisher Site

Abstract

Abstract Methylene blue dye has been widely used in many industries and usually released in natural water sources, which become a health thereat to human-beings and microbes. This paper demonstrates an oxidation method to remove methylene blue in water. The effect of natural organic matter humic acid, on the degradation of methylene blue using PMS was investigated. The results show that PMS could effectively degrade 50 mg/L methylene blue (>95%) when the PMS concentration was larger than 1.0 mM. Humic acid had either negative or positive impact on the degradation processes because of the co-existence of several competitive degradation mechanisms (I: humic acid competes with methylene blue for PMS; II: humic acid activates PMS to produce sulfate radicals; III: Cl–1 competes with methylene blue for sulfate radicals). This study is expected to provide valuable information to improve in situ remediation of dye-contaminated wastewater in the existence of natural organic matters.

Journal

Open Chemistryde Gruyter

Published: May 8, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off