Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier

Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier AbstractStarch is constituted of amylose and amylopectin. Debranching of amylopectin converts it into amylose thereby producing resistant starch which is known to be less digestible by the amylase. This study designed resistant starch using acid hydrolysis and heat-moisture treatment methods with native corn starch as the starting material. Both native and processed starches were subjected to Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry and molecular weight analysis. They were nanospray-dried into nanoparticles with 5-fluorouracil as the drug of interest for colon cancer treatment. These nanoparticles were subjected to size, zeta potential, morphology, drug content and in vitro drug release analysis. Heat-moisture treatment of native corn starch enabled the formation of resistant starch through amylopectin debranching and molecular weight reduction thereby enhancing hydrogen bonding between the starch molecules at the amorphous phase and gelatinization capacity. The nanoparticles prepared from resistant starch demonstrated similar drug release as those of native starch in spite of the resistant starch had a lower molecular weight. The resistant starch is envisaged to be resistant to the digestive action of amylase in intestinal tract without the formed nanoparticles exhibiting excessively fast drug release in comparison to native starch. With reduced branching, it represents an ideal precursor for targeting ligand conjugation in design of oral colon-specific nanoparticulate drug carrier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pure and Applied Chemistry de Gruyter

Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier

Loading next page...
 
/lp/degruyter/development-of-resistant-corn-starch-for-use-as-an-oral-colon-specific-DG2oqIcVlR
Publisher
De Gruyter
Copyright
© 2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
ISSN
0033-4545
eISSN
1365-3075
D.O.I.
10.1515/pac-2017-0806
Publisher site
See Article on Publisher Site

Abstract

AbstractStarch is constituted of amylose and amylopectin. Debranching of amylopectin converts it into amylose thereby producing resistant starch which is known to be less digestible by the amylase. This study designed resistant starch using acid hydrolysis and heat-moisture treatment methods with native corn starch as the starting material. Both native and processed starches were subjected to Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry and molecular weight analysis. They were nanospray-dried into nanoparticles with 5-fluorouracil as the drug of interest for colon cancer treatment. These nanoparticles were subjected to size, zeta potential, morphology, drug content and in vitro drug release analysis. Heat-moisture treatment of native corn starch enabled the formation of resistant starch through amylopectin debranching and molecular weight reduction thereby enhancing hydrogen bonding between the starch molecules at the amorphous phase and gelatinization capacity. The nanoparticles prepared from resistant starch demonstrated similar drug release as those of native starch in spite of the resistant starch had a lower molecular weight. The resistant starch is envisaged to be resistant to the digestive action of amylase in intestinal tract without the formed nanoparticles exhibiting excessively fast drug release in comparison to native starch. With reduced branching, it represents an ideal precursor for targeting ligand conjugation in design of oral colon-specific nanoparticulate drug carrier.

Journal

Pure and Applied Chemistryde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off