Determination of glucose-6-phosphate dehydrogenase cut-off values in a Tunisian population

Determination of glucose-6-phosphate dehydrogenase cut-off values in a Tunisian population AbstractBackground:Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzymopathy worldwide. The incidence depends essentially on the methods used for the assessment. In this respect, we attempted in this study to set cut-off values of G6PD activity to discriminate among normal, heterozygous, and deficient individuals using the World Health Organization (WHO) classification and the receiver operating characteristics (ROC) curve analysis.Methods:Blood samples from 250 female and 302 male subjects were enrolled in this study. The G6PD activity was determined using a quantitative assay. The common G6PD mutations in Tunisia were determined using the amplification refractory mutation system (ARMS-PCR) method. The ROC curve was used to choice the best cut-off.Results:Normal G6PD values were 7.69±2.37, 7.86±2.39, and 7.51±2.35 U/g Hb for the entire, male, and female groups, respectively. Cut-off values for the total, male, and female were determined using the WHO classification and ROC curves analysis. In the male population, both cut-offs established using ROC curve analysis (4.00 U/g Hb) and the 60% level (3.82 U/g Hb), respectively are sensitive and specific resulting in a good efficiency of discrimination between deficient and normal males. For the female group the ROC cut-off (5.84 U/g Hb) seems better than the 60% level cut-off (3.88 U/g Hb) to discriminate between normal and heterozygote or homozygote women with higher Youden Index.Conclusions:The establishment of the normal values for a population is important for a better evaluation of the assay result. The ROC curve analysis is an alternative method to determine the status of patients since it correlates DNA analysis and G6PD activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Loading next page...
 
/lp/degruyter/determination-of-glucose-6-phosphate-dehydrogenase-cut-off-values-in-a-YeyuY7zjmR
Publisher
De Gruyter
Copyright
©2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
D.O.I.
10.1515/cclm-2016-0253
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzymopathy worldwide. The incidence depends essentially on the methods used for the assessment. In this respect, we attempted in this study to set cut-off values of G6PD activity to discriminate among normal, heterozygous, and deficient individuals using the World Health Organization (WHO) classification and the receiver operating characteristics (ROC) curve analysis.Methods:Blood samples from 250 female and 302 male subjects were enrolled in this study. The G6PD activity was determined using a quantitative assay. The common G6PD mutations in Tunisia were determined using the amplification refractory mutation system (ARMS-PCR) method. The ROC curve was used to choice the best cut-off.Results:Normal G6PD values were 7.69±2.37, 7.86±2.39, and 7.51±2.35 U/g Hb for the entire, male, and female groups, respectively. Cut-off values for the total, male, and female were determined using the WHO classification and ROC curves analysis. In the male population, both cut-offs established using ROC curve analysis (4.00 U/g Hb) and the 60% level (3.82 U/g Hb), respectively are sensitive and specific resulting in a good efficiency of discrimination between deficient and normal males. For the female group the ROC cut-off (5.84 U/g Hb) seems better than the 60% level cut-off (3.88 U/g Hb) to discriminate between normal and heterozygote or homozygote women with higher Youden Index.Conclusions:The establishment of the normal values for a population is important for a better evaluation of the assay result. The ROC curve analysis is an alternative method to determine the status of patients since it correlates DNA analysis and G6PD activity.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Jul 26, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off