Detection of nociceptive-related metabolic activity in the spinal cord of low back pain patients using 18F-FDG PET/CT

Detection of nociceptive-related metabolic activity in the spinal cord of low back pain patients... AbstractBackgroundOver the past couple of decades, a number of centers in the brain have been identified as important sites of nociceptive processing and are collectively known as the ‘pain matrix.’ Imaging tools such as functional magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) have played roles in defining these pain-relevant, physiologically active brain regions. Similarly, certain segments of the spinal cord are likely more metabolically active in the setting of pain conditions, the location of which is dependent upon location of symptoms. However, little is known about the physiologic changes in the spinal cord in the context of pain. This study aimed to determine whether uptake of 18F-FDG in the spinal cord on positron emission tomography/computed tomography (PET/CT) of patients with low back pain (LBP) differs from that of patients without LBP.MethodsWe conducted a retrospective review of 18F-FDG PET/CT scans of 26 patients with non-central nervous system cancers, 13 of whom had reported LBP and 13 of whom were free of LBP (controls). No patients had spinal stenosis or significant 18F-FDG contribution of degenerative changes of the spine into the spinal canal. Circular regions of interests were drawn within the spinal canal on transaxial images, excluding bony or discal elements of the spine, and the maximum standardized uptake value (SUVmax) of every slice from spinal nerves C1 to S1 was obtained. SUVmax were normalized by subtracting the SUVmax of spinal nerve L5, as minimal neural tissue is present at this level. Normalized SUVmax of LBP patients were compared to those of LBP-free patients at each vertebral level.ResultsWe found the normalized SUVmax of patients with LBP to be significantly greater than those of control patients when jointly tested at spinal nerves of T7, T8, T9 and T10 (p < 0.001). No significant difference was found between the two groups at other levels of the spinal cord. Within the two groups, normalized SUVmax generally decreased cephalocaudally.ConclusionsPatients with LBP show increased uptake of 18F-FDG in the caudal aspect of the thoracic spinal cord, compared to patients without LBP.ImplicationsThis paper demonstrates the potential of 18F-FDG PET/CT as a biomarker of increased metabolic activity in the spinal cord related to LBP. As such, it could potentially aid in the treatment of LBP by localizing physiologically active spinal cord regions and guiding minimally invasive delivery of analgesics or stimulators to relevant levels of the spinal cord. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Detection of nociceptive-related metabolic activity in the spinal cord of low back pain patients using 18F-FDG PET/CT

Loading next page...
 
/lp/degruyter/detection-of-nociceptive-related-metabolic-activity-in-the-spinal-cord-tt6ceYS9aR
Publisher
De Gruyter
Copyright
© 2016 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2016.11.017
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundOver the past couple of decades, a number of centers in the brain have been identified as important sites of nociceptive processing and are collectively known as the ‘pain matrix.’ Imaging tools such as functional magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) have played roles in defining these pain-relevant, physiologically active brain regions. Similarly, certain segments of the spinal cord are likely more metabolically active in the setting of pain conditions, the location of which is dependent upon location of symptoms. However, little is known about the physiologic changes in the spinal cord in the context of pain. This study aimed to determine whether uptake of 18F-FDG in the spinal cord on positron emission tomography/computed tomography (PET/CT) of patients with low back pain (LBP) differs from that of patients without LBP.MethodsWe conducted a retrospective review of 18F-FDG PET/CT scans of 26 patients with non-central nervous system cancers, 13 of whom had reported LBP and 13 of whom were free of LBP (controls). No patients had spinal stenosis or significant 18F-FDG contribution of degenerative changes of the spine into the spinal canal. Circular regions of interests were drawn within the spinal canal on transaxial images, excluding bony or discal elements of the spine, and the maximum standardized uptake value (SUVmax) of every slice from spinal nerves C1 to S1 was obtained. SUVmax were normalized by subtracting the SUVmax of spinal nerve L5, as minimal neural tissue is present at this level. Normalized SUVmax of LBP patients were compared to those of LBP-free patients at each vertebral level.ResultsWe found the normalized SUVmax of patients with LBP to be significantly greater than those of control patients when jointly tested at spinal nerves of T7, T8, T9 and T10 (p < 0.001). No significant difference was found between the two groups at other levels of the spinal cord. Within the two groups, normalized SUVmax generally decreased cephalocaudally.ConclusionsPatients with LBP show increased uptake of 18F-FDG in the caudal aspect of the thoracic spinal cord, compared to patients without LBP.ImplicationsThis paper demonstrates the potential of 18F-FDG PET/CT as a biomarker of increased metabolic activity in the spinal cord related to LBP. As such, it could potentially aid in the treatment of LBP by localizing physiologically active spinal cord regions and guiding minimally invasive delivery of analgesics or stimulators to relevant levels of the spinal cord.

Journal

Scandinavian Journal of Painde Gruyter

Published: Apr 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off